
Abstract Constraint Programming
draft v0.1

PIERRE TALBOT, University of Luxembourg, Luxembourg
ACHIM JUNG, The University of Birmingham, United Kingdom
KAZUNORI UEDA, Department of Computer Science and Engineering, Waseda University, Japan
PETER VAN ROY, Catholic University of Louvain, Belgium

Abstract constraint reasoning is a recent field which studies constraint solvers from the perspective of abstract
interpretation. The main purpose is to generalize solving techniques to a lattice-theoretic framework in order
to reuse these on other domains. We propose new abstract domains capturing the essence of discrete and
continuous constraint programming, search algorithms and optimization problems. Moreover, we introduce
an abstract framework in which the model (variables and constraints) and the control aspects (search tree and
strategies) of constraint solving are unified.

CCS Concepts: • General and reference → Surveys and overviews; • Theory of computation →
Constraint and logic programming; Process calculi; • Software and its engineering → Constraint and
logic languages; Constraints; • Computing methodologies → Concurrent programming languages; •
Social and professional topics → History of programming languages;

ACM Reference Format:
Pierre Talbot, Achim Jung, Kazunori Ueda, and Peter Van Roy. 2021. Abstract Constraint Programming draft
v0.1. ACM Trans. Program. Lang. Syst. 0, 0, Article 0 (2021), 43 pages. https://doi.org/0000001.0000001

Contents

Abstract 1
Contents 1
1 Introduction 2
2 Background 4
2.1 First-order logic 4
2.2 Lattice theory 5
3 Abstract constraint programming 9
3.1 Concrete domain 10
3.2 Abstract domain 11
3.3 Propagate and search 13
3.4 Relationship between approximations and satisfiability 13
4 Domain of a variable 14

Authors’ addresses: Pierre Talbot, pierre.talbot@uni.lu, University of Luxembourg, Maison du Nombre, Esch-sur-Alzette,
L-4030, Luxembourg; Achim Jung, a.jung@cs.bham.ac.uk, The University of Birmingham, Birmingham, B15 2TT, United
Kingdom; Kazunori Ueda, ueda@ueda.info.waseda.ac.jp, Department of Computer Science and Engineering, Waseda
University, 3-4-1, Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan; Peter Van Roy, peter.vanroy@uclouvain.be, Catholic
University of Louvain, 2, Place Sainte Barbe, Louvain-la-Neuve, B-1348, Belgium.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0164-0925/2021/0-ART0 $15.00
https://doi.org/0000001.0000001

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

https://doi.org/0000001.0000001
https://doi.org/0000001.0000001

0:2 P. Talbot, A. Jung, K. Ueda, and P. Van Roy

4.1 Constructions over unordered universe of discourse 14
4.2 Constructions over ordered universe of discourse 15
5 Propagation problem 18
5.1 An abstract domain for collection of variables 19
5.2 Propagation problem abstract domain 19
5.3 Compositionality of under-approximation 22
5.4 Compositionality of over-approximation 24
6 Search tree 25
6.1 Queuing strategy 26
6.2 Search tree abstract domain 27
6.3 Single solution abstract domain 29
6.4 Compositionality of over-approximation 29
6.5 Compositionality of under-approximation 30
7 Optimization problem 32
7.1 Under-approximating branch-and-bound 33
7.2 Over-approximating branch-and-bound 35
8 Discussion and related work 36
8.1 Existing abstract constraint solvers 36
8.2 Prospective abstract constraint solvers 37
8.3 Combination of abstract constraint solvers 39
8.4 Concurrent constraint programming 39
9 Conclusion 40
References 40

1 INTRODUCTION
Constraint reasoning is a large field encompassing many methods for finding a solution to a set of
constraints. A constraint is a mathematical relation over variables such as 𝑥 > 𝑦, 𝑥 × 𝑦 < 𝑧 × 9.5,
𝑠 ∈ {1, 2, 3} or 𝑠 ⊆ 𝑣 . The semantics of a constraint is the set of valid functions from variables
to values, called assignments, e.g., {{𝑥 ↦→ 𝑎,𝑦 ↦→ 𝑏} | 𝑎 > 𝑏, 𝑎, 𝑏 ∈ Z} for the constraint 𝑥 > 𝑦

over integers. The constraints may be assembled by logical connectives to form a logical formula.
Constraint satisfaction is the problem of finding one or more assignments satisfying a logical formula.
Another fundamental problem is constraint optimization where we seek a best possible solution
according to some criterion, e.g., find a solution with the smallest value of 𝑥 . Constraint satisfaction
and optimization may be applied to many problems from operation research such as scheduling
and vehicle routing, but also from diverse fields including program verification, cryptography,
mathematics, bioinformatics, and musical composition (see, e.g., [RvBW06, BHvMW09]).

Abstract interpretation is a framework to statically analyze programs by over-approximating the
set of values that the variables of a program can take [CC77a] (see also [Min17] for an introduction).
This set of values is represented by a concrete domain, a mathematical structure which is not
necessarily extensionally representable in a machine because it is infinite or very large. A key
idea of abstract interpretation is to approximate this concrete domain with an abstract domain
which has a practical representation. For instance, the set of real numbers {𝑥 ∈ R | 1.1 ≤ 𝑥 ≤ 2.1},
which is not representable because it is infinite, can be over-approximated by the floating point
interval [1.0..2.25]. Alternatively, the concrete set can also be under-approximated by the interval
[1.25..2.0].

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

Abstract Constraint Programming
draft v0.1 0:3

SAT [DHK13]

SMT [CCM13, DHK14]

Linear programming [CH78]

Logic programming [Cou20]

Continuous constraint programming [PMTB13] (Example 6.6)

Discrete constraint programming (Example 6.7)

Optimization problems

Mixed integer programming

Multi-objective optimization

Multilevel programming

Local search
...

Sec. 4–6

Sec. 7

Sec. 8
(discussion)

Abstract domains

Fig. 1. Abstract constraint solvers

Abstract constraint reasoning is a recent field which studies constraint solvers from the perspective
of abstract interpretation. The data structure of a constraint solver is conceptualized as a lattice,
and the constraint solving techniques are formalized as extensive functions (𝑓 (𝑥) ≥ 𝑥) on this
lattice. The lattice structure and its extensive functions together form an abstract domain of the
constraint solver. We give in Figure 1 some references to existing abstract constraint solvers, as
well as constraint solvers not yet studied with abstract interpretation. There are at least three
advantages to be obtained from generalizing solving techniques to a lattice-theoretic framework:
(1) It imports the techniques from one field to the another.
(2) It allows us to combine the different approaches to obtain more efficient hybrid methods.
(3) It promises to give us a better understanding of the techniques of different fields in a unified

theory.
In [DHK13], it is shown how the conflict driven clause learning algorithm of SAT solvers can be
generalized and transfered to other abstract domains. Hybrid approaches can be easily designed
thanks to the various combinations of abstract domains, namely products, available in abstract
interpretation. For instance, the Nelson-Oppen theory combination procedure was shown to be a
product of domains [CCM13].We also studied different generic products in previous work [TCMT19,
TMT20]. We further discuss existing and prospective abstract constraint solvers in Section 8.

In this paper, we contribute new abstract domains capturing the essence of discrete and continu-
ous constraint programming, search algorithms and optimization problems. In particular, our work
extends [PMTB13]—dedicated to continuous constraint programming—to a unified presentation of
both discrete and continuous solving algorithms. We put an emphasis on filling the gap between
practical implementations and theory. Indeed, the theoretical abstract framework presented in this
paper is informed by our previous experience in implementing abstract domains for constraint
reasoning1 [TCMT19, TMT20].

Contributions and roadmap. In order to keep this paper self-contained, we start in Section 2 with
background material on first-order logic and lattice theory. Section 3 introduces the concepts of
concrete and abstract domains and their relations to satisfiability. Our definition of abstract domain

1https://github.com/ptal/AbSolute

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

https://github.com/ptal/AbSolute

0:4 P. Talbot, A. Jung, K. Ueda, and P. Van Roy

refines those of previous work [PMTB13, TMT20]. Our first contribution is to unify both under-
and over-approximating domains in a single framework.

A constraint solver is the combination of many components including the domain of the variables,
the constraints and the search tree and search strategies. There is usually a distinction between
the model (variables and constraints) and the control (search tree and search strategies). This
distinction was already made in the early days of logic programming by the equation “logic +
control = algorithm” [Kow79]. Our second contribution is to show that all these components can
be represented as abstract domains with the same interface. The model and control are analogous
parts of our framework. Moreover, this is the first time the search component of a constraint
solver is formalized as an abstract domain. We present this contribution incrementally. We start by
introducing several domains of variable in Section 4 including integers, floating-point numbers and
sets. Section 5 discusses abstract domains for constraints which are built on domains of variable.
The control part is discussed in Section 6 where we construct the search tree abstract domain.
Along the way, we also survey and connect many existing works to our abstract framework.

In Section 7, we present an abstract optimization procedure on under- and over-approximating
abstract domains. The third contribution is to lift two branch-and-bound (BAB) optimization
algorithms to a lattice-theoretic framework. As we discuss in Section 8.2, our generalization
encompasses the branch-and-bound algorithms used in multi-objective optimization and mixed
integer programming.

Our fourth contribution is to establish theorems for combining under- and over-approximating
abstract domains. In Sections 5.3 and 5.4, we study general conditions to correctly combine functions
on abstract domains while preserving under- and over-approximations. In Sections 6.4 and 6.5,
we extend these results to non-monotone functions over the search tree abstract domain. As our
results are established in a very general lattice-theoretic framework, they can be reused to prove
the correctness of new abstract constraint solvers. In particular, we establish the properties of the
abstract optimization procedures in Section 7 thanks to these results.
Previously, we proposed a search strategy language [Tal19] based on lattice theory, which is

incomplete due to the lack of treatment of under- and over-approximation properties. Our long term
goal is to propose a programming language for computing with abstract domains, and automatically
proving under- and over-approximating properties. This paper is a first step towards this goal. We
discuss this aspect in Section 8.4.

2 BACKGROUND
2.1 First-order logic
We fix the terminology surrounding the syntax of first-order logic (FOL) used throughout this paper.
A first-order signature 𝑆 is a triple ⟨𝑋, 𝐹, 𝑃⟩ where 𝑋 is the set of variables, 𝐹 the set of function
symbols and 𝑃 the set of predicate symbols. We write 𝑥,𝑦, . . . ∈ 𝑋 to denote variables, 𝑓 , 𝑔, . . . ∈ 𝐹
for function symbols and 𝑝, 𝑞, . . . ∈ 𝑃 for predicate symbols. Each function and predicate symbol
has an arity 𝑛 ≥ 0. A function symbol (resp. predicate symbol) with an arity of 0 is called a constant
(resp. Boolean atom). A term is either a variable or a function whose arguments are terms. An
atom (atomic formula) is a predicate 𝑝 (𝑡1, . . . , 𝑡𝑛) whose arguments 𝑡1, . . . , 𝑡𝑛 are terms. A literal
is either an atom 𝑎 or its negation ¬𝑎. A formula is built by the usual existential quantifier ∃, the
universal quantifier ∀ and the (non-minimal) set of Boolean connectives {¬,∧,∨,⇒,⇔}. We say
that a formula 𝜑 (or term 𝑡) is closed (or ground) if there is no variable free in 𝜑 (or 𝑡). We denote
the set of free variables of 𝜑 by FV (𝜑). A sentence is a closed formula. A theory is a set of sentences
based on a signature 𝑆 . A clause is a disjunction of literals ℓ1 ∨ . . . ∨ ℓ𝑛 . A formula in conjunctive

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

Abstract Constraint Programming
draft v0.1 0:5

normal form (CNF) is a conjunction of clauses. The substitution 𝜑 [𝑥 ↦→ 𝑡] denotes the formula 𝜑 in
which all occurrences of a variable 𝑥 free in 𝜑 have been replaced by the term 𝑡 .

We consider model-theoretic semantics, pioneered by Tarski in 1933 [Tar33], which is the promi-
nent semantics adopted in the field of constraint programming. Given a signature 𝑆 = (𝑋, 𝐹, 𝑃), a
structure 𝐴 is a tuple (𝐷, JK𝐹 , JK𝑃) where (i) 𝐷 is a non-empty set of elements—called the universe
of discourse, (ii) JK𝐹 is a function mapping function symbols 𝑓 ∈ 𝐹 with arity 𝑛 to interpreted
functions 𝑓𝐴 : 𝐷𝑛 → 𝐷 , and (iii) JK𝑃 is a function mapping predicate symbols 𝑝 ∈ 𝑃 with arity 𝑛 to
interpreted predicates 𝑝𝐴 ⊆ 𝐷𝑛 . An assignment is a function 𝑋 → 𝐷 mapping variables to values.
We denote the set of assignment by Asn. Let 𝑎 ∈ 𝐴𝑠𝑛, we write 𝑎[𝑥 ↦→ 𝑑] the assignment in which
we updated the value of 𝑥 by 𝑑 in 𝑎. The syntax and semantics are related by the ternary relation
𝐴 ⊨𝑎 𝜑 , called the entailment, where 𝐴 is a structure, 𝑎 ∈ Asn an assignment and 𝜑 a first-order
formula. It is read as “the formula 𝜑 is satisfied by the assignment 𝑎 in the structure 𝐴”. We first
give the interpretation function JK𝑎 for evaluating the terms of the language:

J𝑥K𝑎 = 𝑎(𝑥) if 𝑥 ∈ 𝑋
J𝑓 (𝑡1, . . . , 𝑡𝑛)K𝑎 = J𝑓 K𝐹 (J𝑡1K𝑎, . . . , J𝑡𝑛K𝑎)

The relation ⊨ is defined inductively as follows:

𝐴 ⊨𝑎 𝑝 (𝑡1, . . . , 𝑡𝑛) if (J𝑡1K𝑎, . . . , J𝑡𝑛K𝑎) ∈ J𝑝K𝑃
𝐴 ⊨𝑎 𝜑1 ∧ 𝜑2 if 𝐴 ⊨𝑎 𝜑1 and 𝐴 ⊨𝑎 𝜑2
𝐴 ⊨𝑎 𝜑1 ∨ 𝜑2 if 𝐴 ⊨𝑎 𝜑1 or 𝐴 ⊨𝑎 𝜑2
𝐴 ⊨𝑎 ¬𝜑 if 𝐴 ⊨𝑎 𝜑 does not hold
𝐴 ⊨𝑎 ∃𝑥, 𝜑 if there exists 𝑑 ∈ 𝐷 such that 𝐴 ⊨𝑎 [𝑥 ↦→𝑑] 𝜑
𝐴 ⊨𝑎 ∀𝑥, 𝜑 if for all 𝑑 ∈ 𝐷, we have 𝐴 ⊨𝑎 [𝑥 ↦→𝑑] 𝜑

2.2 Lattice theory
In this section, we follow the definitions and style of the book [DP02], other references include [Bir67,
Gra78]. A partially ordered set (poset) is a pair ⟨𝑃, ≤⟩ such that 𝑃 is a set and ≤, called the order
of 𝑃 , is a reflexive, antisymmetric and transitive relation. The strict order relation < is defined as
𝑥 < 𝑦 ⇔ 𝑥 ≤ 𝑦 ∧ 𝑥 ≠ 𝑦 for all 𝑥,𝑦 ∈ 𝑃 . The reversed order ≥ is defined by 𝑥 ≤ 𝑦 ⇔ 𝑦 ≥ 𝑥 . Given a
poset ⟨𝑃, ≤⟩ and 𝑆 ⊆ 𝑃 , 𝑥 ∈ 𝑃 is a lower bound of 𝑆 if ∀𝑦 ∈ 𝑆, 𝑥 ≤ 𝑦. We denote the set of all lower
bounds of 𝑆 by 𝑆 ℓ . A lower bound 𝑥 ∈ 𝑃 of 𝑆 is the greatest lower bound of 𝑆 if ∀𝑦 ∈ 𝑆 ℓ , 𝑥 ≥ 𝑦. The
(least) upper bound and the set of all upper bounds 𝑆𝑢 are defined dually by reversing the order
(using ≥ instead of ≤ in the definitions and vice-versa).

Definition 2.1 (Lattice). A poset ⟨𝐿, ≤⟩ is a lattice if every pair of elements 𝑥,𝑦 ∈ 𝐿 has both a
least upper bound and a greatest lower bound. A bounded lattice has a largest element ⊤ ∈ 𝐿, called
top, such that ∀𝑥 ∈ 𝐿, 𝑥 ≤ ⊤ and an least element ⊥ ∈ 𝐿, called bottom, such that ∀𝑥 ∈ 𝐿, ⊥ ≤ 𝑥 . A
complete lattice has a least upper bound and greatest lower bound for every subset 𝑆 ⊆ 𝐿.

As a matter of convenience and when no ambiguity arises, we simply write 𝐿 instead of ⟨𝐿, ≤⟩ when
referring to ordered structures. Also, we refer to the ordering of the lattice 𝐿 as ≤𝐿 and similarly
for any operation defined on 𝐿.

Alternatively, a lattice can be viewed as an algebraic structure ⟨𝐿,⊔,⊓⟩ where the join operation
𝑥⊔𝑦 is the least upper bound of the set {𝑥,𝑦} and themeet operation 𝑥⊓𝑦 is its greatest lower bound.
We use the notation

⊔
𝑆 (resp.

d
𝑆) to denote the least upper bound (resp. greatest lower bound) of

the set 𝑆 . The operation ⊔ is associative ((𝑥 ⊔ 𝑦) ⊔ 𝑧 = 𝑥 ⊔ (𝑦 ⊔ 𝑧)), commutative (𝑥 ⊔ 𝑦 = 𝑦 ⊔ 𝑥),
idempotent (𝑥 ⊔ 𝑥 = 𝑥) and absorbing (𝑥 ⊔ (𝑥 ⊓𝑦) = 𝑥). This is defined dually for ⊓. The structures
⟨𝐿, ≤⟩ and ⟨𝐿,⊔,⊓⟩ are connected by the following lemma.

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

0:6 P. Talbot, A. Jung, K. Ueda, and P. Van Roy

Lemma 2.2 (The Connecting Lemma [DP02]). Let 𝐿 be a lattice and 𝑎, 𝑏 ∈ 𝐿. Then the following
are equivalent: 𝑎 ≤ 𝑏, 𝑎 ⊔ 𝑏 = 𝑏 and 𝑎 ⊓ 𝑏 = 𝑎.

This lemma implies that whenever we define the order ≤, the operators ⊔ and ⊓ are automatically
entailed by ≤. However, because it is not always straightforward to derive one operator from the
others, we usually define all three operators, without further mentioning this correspondence.

We understand the algebraic notation in the sense of information systems [Sco82]. An information
system views the order ≤ as a “contains less information than” relation, the bottom element ⊥
as the element with the least information, and the top element ⊤ as the element that contains all
the information. In the lattices presented in this paper, ⊤ will always represent an inconsistent
element, although other elements of the lattice might be inconsistent too. This will be made clear
in Section 3. The elements of a set will represent the states of a computation, and functions over
these states will represent a computation. Constraint solving algorithms will be the computation of
interest in this paper. We capture several properties and terminology on functions as follows.

Definition 2.3. Let ⟨𝑃, ≤⟩ and ⟨𝑄, ≤⟩ be posets.
(1) 𝑓 : 𝑃 → 𝑃 is idempotent if ∀𝑥 ∈ 𝑃, 𝑓 (𝑓 (𝑥)) = 𝑓 (𝑥),
(2) 𝑓 : 𝑃 → 𝑃 is extensive if ∀𝑥 ∈ 𝑃, 𝑥 ≤ 𝑓 (𝑥),
(3) 𝑓 : 𝑃 → 𝑄 is monotone if ∀𝑥,𝑦 ∈ 𝑃, 𝑥 ≤𝑃 𝑦 ⇒ 𝑓 (𝑥) ≤𝑄 𝑓 (𝑦),
(4) 𝑓 : 𝑃 → 𝑄 is an order-embedding if ∀𝑥,𝑦 ∈ 𝑃, 𝑥 ≤𝑃 𝑦 ⇔ 𝑓 (𝑥) ≤𝑄 𝑓 (𝑦),
(5) A function that is idempotent, extensive and monotone is called a closure operator,
(6) We write (𝑓 ◦ 𝑔) (𝑥) for the functional composition 𝑓 (𝑔(𝑥)), and 𝑓 𝑖 for 𝑓 ◦ 𝑓 ◦ . . . ◦ 𝑓︸ ︷︷ ︸

𝑖 times

, 𝑖 ≥ 0.

(7) A fixed point of a function 𝑓 : 𝑃 → 𝑃 is an element 𝑥 ∈ 𝑃 such that 𝑓 (𝑥) = 𝑥 . We denote as
fp(𝑓) def= {𝑥 ∈ 𝑃 | 𝑓 (𝑥) = 𝑥} the set of fixed points of 𝑓 .

The extensive property is one of the most important concepts in this paper. An extensive function
captures a computation over a lattice which progresses from bottom upwards, as we gather more
information as the computation goes on. We will show that many combinatorial solvers are actually
extensive functions over suitable lattices. We also define chain conditions, which will be useful to
relate extensive functions and termination.

Definition 2.4 (ACC and DCC). Let 𝐿 be a lattice. 𝐿 satisfies the ascending chain condition (ACC)
if for all increasing chains 𝑥1 ≤ . . . ≤ 𝑥𝑛 ≤ . . . of elements in 𝐿, we have a 𝑘 ∈ N such that
𝑥𝑘 = 𝑥𝑘+1 = Dually, 𝐿 satisfies the descending chain condition (DCC) if for all decreasing chains
𝑥1 ≥ . . . ≥ 𝑥𝑛 ≥ . . ., we have 𝑘 ∈ N such that 𝑥𝑘 = 𝑥𝑘+1 =

As a computer scientist builds data structures from existing ones, we can also derive new lattices
from more basic ones. We define a number of useful constructions for the rest of this paper. We
will use and illustrate these constructions as we progress in the paper.

Definition 2.5 (Lattice constructions). Let ⟨𝐿, ≤,⊔,⊓,⊥,⊤⟩ and ⟨𝐾, ≤,⊔,⊓,⊥,⊤⟩ be two bounded
lattices. Then new lattices can be obtained by the following constructions:
(1) Duality: ⟨𝐿𝜕, ≥,⊓,⊔,⊤,⊥⟩.
(2) Cartesian product: ⟨𝐿 × 𝐾, ≤,⊔,⊓,⊥,⊤⟩ where:
• 𝐿 × 𝐾 def

= {(𝑥,𝑦) | 𝑥 ∈ 𝐿,𝑦 ∈ 𝐾},
• (𝑥,𝑦) ≤ (𝑥 ′, 𝑦 ′) def= 𝑥 ≤𝐿 𝑥 ′ ∧ 𝑦 ≤𝐾 𝑦 ′,
• (𝑥,𝑦) ⊔ (𝑥 ′, 𝑦 ′) def= (𝑥 ⊔𝐿 𝑥 ′, 𝑦 ⊔𝐾 𝑦 ′),
• (𝑥,𝑦) ⊓ (𝑥 ′, 𝑦 ′) def= (𝑥 ⊓𝐿 𝑥 ′, 𝑦 ⊓𝐾 𝑦 ′),

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

Abstract Constraint Programming
draft v0.1 0:7

• ⊥ def
= (⊥𝐿,⊥𝐾), ⊤

def
= (⊤𝐿,⊤𝐾),

For 𝑥1 ∈ 𝐿, 𝑥2 ∈ 𝐾 , we define the projection 𝜋𝑖 (𝑥1, 𝑥2) = 𝑥𝑖 , for 𝑖 ∈ {1, 2}. For the sake of
readability, we also extend the projection over any subset 𝑆 ⊆ 𝐿×𝐾 as 𝜋𝑖 [𝑆] = {𝜋𝑖 (𝑥) | 𝑥 ∈ 𝑆}.

(3) Pointwise lifting: ⟨[𝑋 ↛ 𝐿], ≤,⊔,⊓,⊥,⊤⟩ where:
• 𝑋 is a set, [𝑋 ↛ 𝐿] is the set of all partial functions from 𝑋 to 𝐿.
• 𝜎 ≤ 𝜏 def

= ∀𝑥 ∈ 𝜋1 [𝜎], 𝑥 ∈ 𝜋1 [𝜏] ∧ 𝜎 (𝑥) ≤𝐿 𝜏 (𝑥) where 𝜋1 [𝜎] denotes the domain of 𝜎 ,

• 𝜎 ⊔ 𝜏 def
= _𝑥.

𝜎 (𝑥) ⊔𝐿 𝜏 (𝑥) if 𝑥 ∈ 𝜋1 [𝜎] ∩ 𝜋1 [𝜏]
𝜎 (𝑥) if 𝑥 ∈ 𝜋1 [𝜎] \ 𝜋1 [𝜏]
𝜏 (𝑥) if 𝑥 ∈ 𝜋1 [𝜏] \ 𝜋1 [𝜎]

• 𝜎 ⊓ 𝜏 def
= _𝑥.𝜎 (𝑥) ⊓𝐿 𝜏 (𝑥),

• ⊥ is the empty function, and ⊤ def
= _𝑥 .⊤𝐿 .

This definition is similar for the lattice of all total functions that we write [𝑋 → 𝐿].
(4) Powerset completion: ⟨P(𝐿), ⊆,∪,∩, {}, 𝐿⟩.
(5) Linear sum: 𝐿 ⊕ 𝐾 = ⟨𝐿 ∪ 𝐾, ≤,⊔,⊓,⊥,⊤⟩ where:
• 𝑥 ≤ 𝑦 def

= 𝑥 ≤𝐿 𝑦 ∨ 𝑥 ≤𝐾 𝑦 ∨ (𝑥 ∈ 𝐿 ∧ 𝑦 ∈ 𝐾). Intuitively, the element in 𝐾 are greater than
all elements in 𝐿.

• 𝑥 ⊔ 𝑦 def
=

𝑥 ⊔𝐿 𝑦 if 𝑥,𝑦 ∈ 𝐿
𝑥 ⊔𝐾 𝑦 if 𝑥,𝑦 ∈ 𝐾
𝑥 if 𝑥 ∈ 𝐾,𝑦 ∈ 𝐿
𝑦 if 𝑦 ∈ 𝐾, 𝑥 ∈ 𝐿

𝑥 ⊓ 𝑦 def
=

𝑥 ⊓𝐿 𝑦 if 𝑥,𝑦 ∈ 𝐿
𝑥 ⊓𝐾 𝑦 if 𝑥,𝑦 ∈ 𝐾
𝑥 if 𝑥 ∈ 𝐿,𝑦 ∈ 𝐾
𝑦 if 𝑦 ∈ 𝐿, 𝑥 ∈ 𝐾

• ⊥ def
= ⊥𝐿 , ⊤

def
= ⊤𝐾 .

An issue with the powerset completion is that two distinct elements 𝑎 and 𝑏, such that 𝑎 ≤ 𝑏 ∈ 𝐿,
are not ordered in P(𝐿) since {𝑎} ⊈ {𝑏}. This stems from the fact that the powerset completion
views its elements as atomic, and that its ordering is defined regardless of the structure of 𝐿. A
traditional way of dealing with this issue is to take the down-set or up-set completion of the base
lattice.

Definition 2.6 (Down-set and up-set). Let 𝑃 be a poset, and 𝑆 ⊆ 𝑃 . The down-set ↓𝑆 and up-set ↑𝑆
are defined by:

↓𝑆 = {𝑦 ∈ 𝑃 | ∃𝑥 ∈ 𝑆,𝑦 ≤ 𝑥} ↑𝑆 = {𝑦 ∈ 𝑃 | ∃𝑥 ∈ 𝑆,𝑦 ≥ 𝑥}
Let 𝑎 ∈ 𝑃 , then we write ↓𝑎 for ↓{𝑎} and ↑𝑎 for ↑{𝑎}. The set of all down-sets of 𝑃 is denotedD(𝑃),
and the set of all up-sets is denotedU(𝑃).

Theorem 2.7. ⟨D(𝑃), ⊆,∪,∩, {}, 𝑃⟩ and ⟨U(𝑃), ⊇,∩,∪, 𝑃, {}⟩ are complete lattices.

This theorem is a standard result, see, e.g., [DP02]. We remark that these two lattices are isomorphic
as the complement of an upset is a downset and vice versa. From an implementation standpoint, a
drawback of these completions is that an element {𝑎, 𝑏} ∈ D(𝐿) might contain redundant elements
if 𝑎 ≤𝐿 𝑏. From the viewpoint of information systems, 𝑏 already contains all the information
contained in 𝑎, thus we do not need 𝑎. To overcome this drawback, we consider the antichains of a
lattice 𝐿. Intuitively, the elements of an antichain are not comparable to each other. We first give
some definitions concerning antichains.

Definition 2.8 (Antichain, minimal and maximal elements). Let ⟨𝐿, ≤⟩ be a lattice. An antichain is
a set 𝑆 ⊆ 𝐿 such that for all pairs of elements 𝑎, 𝑏 ∈ 𝑆 , we have 𝑎 ≤ 𝑏 ⇔ 𝑎 = 𝑏. Given a set 𝑄 ⊆ 𝐿,
the set of its minimal and maximal elements are defined as follows:

Min 𝑄 = {𝑥 ∈ 𝑄 | ∀𝑦 ∈ 𝑄, ¬(𝑥 >𝐿 𝑦)} Max 𝑄 = {𝑥 ∈ 𝑄 | ∀𝑦 ∈ 𝑄, ¬(𝑥 <𝐿 𝑦)}

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

0:8 P. Talbot, A. Jung, K. Ueda, and P. Van Roy

By definition, Min 𝑄 and Max 𝑄 are antichains.

Example 2.9. Consider the set of sets 𝑆 = {{0, 1}, {1, 2}, {0}, {1}} ⊂ P(Z) such that each element
in 𝑆 is ordered by subset inclusion. Then we have Min 𝑆 = {{0}, {1}} and Max 𝑆 = {{0, 1}, {1, 2}}.

Lemma 2.10. If 𝑄 is a non-empty finite set, then the sets of minimal and maximal elements Min 𝑄
andMax 𝑄 are not empty. Moreover, for all elements 𝑥 in𝑄 , there is a representative element𝑦 ∈ Max 𝑄
that contains more information than 𝑥 , i.e., 𝑥 ≤ 𝑦, and dually for Min 𝑄 .

The second part of the lemma shows that the setMax 𝑄 “contains all the information” contained in
𝑄 , i.e., we do not lose information when taking the antichain. This is not generally true for infinite
sets. Because an infinite chain𝐶 does not necessarily have a maximal element, we haveMax 𝐶 = {}.
Therefore, the information about this chain is lost, and some elements lack a representative element.

We equip the set of antichains of a lattice with two isomorphic orderings called the Hoare
and Smyth orderings. These orderings were first explored in domain theory, in the context of
powerdomains [Plo76, Smy78]. An application of powerdomains is to give a semantics to nonde-
terministic language constructs such as guarded commands [Sco82]. We consider the Hoare and
Smyth constructions in the context of lattice theory here. We write Pf (𝐿) the set of finite subsets
of 𝐿.

Definition 2.11 (Hoare construction). Let ⟨𝐿, ≤⟩ be a lattice. Then the Hoare construction ⟨𝐿𝐻 , ≤
,⊔,⊓,⊥,⊤⟩ is defined as follows:
• 𝐿𝐻 = {𝑆 ⊆ Pf (𝐿) | 𝑆 is an antichain in 𝐿},
• 𝑋 ≤ 𝑌 def

= ∀𝑥 ∈ 𝑋, ∃𝑦 ∈ 𝑌, 𝑥 ≤𝐿 𝑦,
• 𝑋 ⊔ 𝑌 def

= Max (𝑋 ∪ 𝑌),
• 𝑋 ⊓ 𝑌 def

= Max {𝑥 ⊓𝐿 𝑦 | 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 },
• ⊥ def

= {} and ⊤ def
= {⊤𝐿}.

Definition 2.12 (Smyth construction). Let ⟨𝐿, ≤⟩ be a lattice. Then the Smyth construction ⟨𝐿𝑆 , ≤
,⊔,⊓,⊥,⊤⟩ is defined as follows:
• 𝐿𝑆 = {𝑆 ⊆ Pf (𝐿) | 𝑆 is an antichain in 𝐿},
• 𝑋 ≤ 𝑌 def

= ∀𝑦 ∈ 𝑌, ∃𝑥 ∈ 𝑋, 𝑥 ≤𝐿 𝑦,
• 𝑋 ⊔ 𝑌 def

= Min {𝑥 ⊔𝐿 𝑦 | 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 },
• 𝑋 ⊓ 𝑌 def

= Min (𝑋 ∪ 𝑌),
• ⊥ def

= {⊥𝐿} and ⊤
def
= {}.

When the base lattice 𝐿 is clear from the context, we will write ≤𝐻 instead of ≤𝐿𝐻 to improve the
readability (and similarly for other operations, as well as those of the Smyth construction).

We give some intuitions on these constructions, and then prove they generate lattices. The choice
of the Hoare or Smyth lattice very much depends on the semantics we want to give to the base
lattice. For example, let {𝑎, 𝑏} be an antichain in the base lattice 𝐿. Both orderings allow us to refine
𝑎 or 𝑏 with respect to ≤𝐿 , thus we have {𝑎, 𝑏} ≤ {𝑎, 𝑐} if 𝑏 ≤𝐿 𝑐 . The essence of the Hoare lattice
𝐿𝐻 lies in the fact that an antichain {𝑎, 𝑏} can be extended with any new element 𝑑 ∈ 𝐿 that is not
comparable to 𝑎 or 𝑏, thus obtaining the new antichain {𝑎, 𝑏, 𝑑}. This explains why ⊥𝐻 is the empty
set: we can add new elements as the computation progresses; ⊤𝐻 being the join of all information.
Dually, the Smyth lattice allows us to forget about some uninteresting elements—for example
inconsistent states—and thus we have {𝑎, 𝑏} ≤𝑆 {𝑎}. The Smyth view of the world considers that a
computation starts with too much information that needs to be refined.

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

Abstract Constraint Programming
draft v0.1 0:9

We now prove that 𝐿𝐻 and 𝐿𝑆 are lattices if 𝐿 is a lattice. To show that, we rely on embeddings
from 𝐿𝐻 to D(𝐿), and from 𝐿𝑆 toU(𝐿).

Lemma 2.13. Let 𝐿 be a lattice. The functions

𝛾𝐻 : 𝐿𝐻 → D(𝐿) 𝛾𝑆 : 𝐿𝑆 →U(𝐿)
𝛾𝐻 (𝑋) = ↓𝑋 𝛾𝑆 (𝑋) = ↑𝑋

are order-embeddings.

Proof. We prove this lemma for 𝛾𝐻 , as the proof for 𝛾𝑆 is similar. Let 𝑋,𝑌 ∈ 𝐿𝐻 , then we have:
𝑋 ≤𝐻 𝑌 ⇔ 𝛾𝐻 (𝑋) ≤D(𝐿) 𝛾𝐻 (𝑌)

∀𝑎 ∈ 𝑋, ∃𝑏 ∈ 𝑌, 𝑎 ≤𝐿 𝑏 ⇔ ↓𝑋 ⊆ ↓𝑌
• (⇒) For all 𝑎 ∈ 𝑋 , there is 𝑏 ∈ 𝑌 such that 𝑎 ≤𝐿 𝑏. Hence, we have ↓𝑎 ⊆ ↓𝑏 ⊆ ↓𝑌 . Since it
holds for all 𝑎 ∈ 𝑋 , we have ∪𝑎∈𝑋↓𝑎 = ↓𝑋 ⊆ ↓𝑌 .
• (⇐) Let 𝑎 ∈ ↓𝑋 , then there exists 𝑏 ∈ ↓𝑌 such that 𝑎 ≤𝐿 𝑏. Moreover, there must exist 𝑐 ∈ 𝑌
such that 𝑏 ≤ 𝑐 , because 𝑌 is a finite set. Therefore, for all 𝑎 ∈ ↓𝑋 , hence all 𝑎 ∈ 𝑋 , there is
an element 𝑐 ∈ 𝑌 such that 𝑎 ≤𝐿 𝑐 .

□

Lemma 2.14. Let 𝐿 be a lattice. 𝛾𝐻 and 𝛾𝑆 are lattice homomorphisms, that is, for all 𝑋,𝑌 ∈ 𝐿𝐻 ,
𝛾𝐻 (𝑋 ⊔ 𝑌) = 𝛾𝐻 (𝑋) ⊔ 𝛾𝐻 (𝑌) and 𝛾𝐻 (𝑋 ⊓ 𝑌) = 𝛾𝐻 (𝑋) ⊓ 𝛾𝐻 (𝑌) (similarly for 𝛾𝑆).

Proof. We have 𝛾𝐻 (𝑋 ⊔𝐻 𝑌) = ↓Max (𝑋 ∪𝑌) = ↓(𝑋 ∪𝑌) = ↓𝑋 ∪↓𝑌 = 𝛾𝐻 (𝑋) ⊔𝛾𝐻 (𝑌). The meet
is proved as follows: 𝛾𝐻 (𝑋 ⊓𝐻 𝑌) = ↓(Max {𝑥 ⊓𝐿 𝑦 | 𝑥 ∈ 𝑋 ∧𝑦 ∈ 𝑌 } = ↓({𝑥 ⊓𝐿 𝑦 | 𝑥 ∈ 𝑋 ∧𝑦 ∈ 𝑌 }).
We have 𝑥 ⊓𝐿 𝑦 ∈ ↓𝑋 ∩↓𝑌 for all 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 , therefore ↓({𝑥 ⊓𝐿 𝑦 | 𝑥 ∈ 𝑋 ∧𝑦 ∈ 𝑌 }) ⊆ ↓𝑋 ∩↓𝑌 .
Let 𝑧 ∈ ↓𝑋 ∩ ↓𝑌 , then necessarily there is 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 such that 𝑧 ≤𝐿 𝑥 and 𝑧 ≤𝐿 𝑦, thus
𝑧 ≤𝐿 𝑥 ⊓𝐿 𝑦 and ↓𝑧 ⊆ ↓(𝑥 ⊓𝐿 𝑦). Since this holds for all 𝑧 ∈ ↓𝑋 ∩ ↓𝑌 , we have ↓({𝑥 ⊓𝐿 𝑦 | 𝑥 ∈
𝑋 ∧ 𝑦 ∈ 𝑌 }) ⊇ ↓𝑋 ∩ ↓𝑌 . Because both the join and meet operations are preserved, we conclude
that 𝛾𝐻 is a lattice homomorphism. The proof is similar for 𝛾𝑆 . □

Proposition 2.15. Let 𝐿 be a lattice, then ⟨𝐿𝐻 , ≤⟩ and ⟨𝐿𝑆 , ≤⟩ are lattices.

Proof. Because 𝛾𝐻 is an order-embedding (Lemma 2.13) and a homomorphism (Lemma 2.14),
the sublattice 𝛾𝐻 (𝐿𝐻) of D(𝐿) is isomorphic to 𝐿𝐻 (this is a standard result, see, e.g., [DP02]).
Therefore, 𝐿𝐻 must be a lattice. The same goes for 𝐿𝑆 . □

As an additional result, Crampton and Loizou have shown that 𝛾𝐻 is a lattice isomorphism when
the base lattice 𝐿 is finite [CL01].

3 ABSTRACT CONSTRAINT PROGRAMMING
In the last decade, abstract interpretation has shown promising results towards providing a “grand
unification theory” among the fields of constraint reasoning [PMTB13, DHK13, DHK14, CCM13,
TMT20]. Figure 2a presents in a nutshell the fragment of abstract interpretation we are interested
in. The syntax of a program, or in our case, of a constraint problem is represented by a set Φ of
first-order formulas. We interpret a formula 𝜑 in a concrete or abstract domain respectively with
J𝜑K♭ and J𝜑K♯. The concrete domain represents the mathematical semantics of this formula, which
is its exact set of solutions, possibly infinite and not extensionally representable in a computer. The
abstract domain usually corresponds to the machine semantics of this formula, which might under-
or over-approximate the set of solutions of the concrete domain. An over-approximation contains
all solutions but might also contain non-solution elements. In contrast, an under-approximation
contains only solutions but not necessarily all. Moreover, the abstract and concrete domains are

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

0:10 P. Talbot, A. Jung, K. Ueda, and P. Van Roy

JK♯ JK♭

𝛾

Φ

𝐷♯ 𝐷♭

(a) General diagram.

JK♯ JK♭

𝛾

𝑥 > 2.25 ∧ 𝑥 < 2.75 ∈ Φ

F × F P(R)
(b) Example on continuous domain.

Fig. 2. Non-commuting diagram of the functions connecting a logical formula, a concrete domain and an
abstract domain.

connected by a monotonic concretization function 𝛾 : 𝐷♯ → 𝐷♭. We illustrate this fundamental
notion of approximation on an example.

Example 3.1. Approximations are particularly illuminating on continuous domains, such as real
numbers, which in practice can be approximated with floating point numbers. We show in Figure 2b
the instantiation of the general diagram to a continuous domain. Let 𝑥 > 2.25 ∧ 𝑥 < 2.75 ∈ Φ be a
logical formula. Then the concrete solution set of this formula is {𝑥 ∈ R | 𝑥 > 2.25 ∧ 𝑥 < 2.75}. It is
not possible to represent all real numbers in a machine. Therefore, we rely on the abstract domain
of floating point intervals F × F. We can approximate the concrete solution set in this abstract
domain in two possible ways:
• Over-approximation: J𝑥 > 2.25 ∧ 𝑥 < 2.75K♯↑ = [2.25..2.75] ∈ F2 (2.25 and 2.75 are not
solutions).
• Under-approximation: J𝑥 > 2.25 ∧ 𝑥 < 2.75K♯↓ = [2.375..2.625] ∈ F

2 (2.3 and 2.7 are missing
solutions). A tighter representation is possible by taking the closest floating point number
after 2.25 and before 2.75, but some solutions will still be missing.

Note that with a more expressive abstract domain (such as open intervals), this formula might be
exactly represented. However, in general, it is not always possible to exactly represent a formula.

Remark. In the field of abstract interpretation, under- and over-approximations are related to
soundness and completeness properties of the abstraction, respectively. Unfortunately, in the
field of constraint solving, under-approximation matches the completeness property and over-
approximation the soundness property. To avoid confusion, we will simply talk about these proper-
ties as under- or over-approximations. We formally define them in Section 3.2.

We now make precise the definitions of the concrete and abstract domains. This section forms
the theoretical backbone for the next sections in which we create various constraint solvers as
abstract domains.

3.1 Concrete domain
The universe of discourse is the set of possible values for a variable in a solution. The concrete
domain automatically unfolds from the universe of discourse.

Definition 3.2 (Concrete domain). Let 𝑉 be a set of values, the universe of discourse, and 𝑋 a set
of variables. We have Asn = [𝑋 → 𝑉], the set of all assignments of the variables to values. The
concrete domain 𝐷♭ = ⟨P(Asn), ⊇⟩ is the dual lattice of the powerset of assignments.

The solution space is the dual of the powerset completion since we have fewer solutions when
we add more constraints, thereby having more information about the problem. Given a structure 𝐴,

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

Abstract Constraint Programming
draft v0.1 0:11

we connect a logical formula to an element of the concrete domain as follows:

J.K♭ : Φ→ 𝐷♭

J𝜑K♭ = {𝑎 ∈ Asn | 𝐴 ⊨𝑎 𝜑}

We connect the entailment relation ⊨ to the lattice operators as follows:

JtrueK♭ def
= ⊥♭ = 𝐷♭ JfalseK♭ def

= ⊤♭ = {}
J𝜑1 ∧ 𝜑2K♭ = J𝜑1K♭ ⊔ J𝜑2K♭ J𝜑1 ∨ 𝜑2K♭ = J𝜑1K♭ ⊓ J𝜑2K♭ J¬𝜑K♭ = 𝐷♭ \ J𝜑K♭

Applying the interpretation function to a logical formula directly yields the set of solutions. The
terms of the formula are interpreted according to the structure 𝐴.

Example 3.3. Discrete and continuous constraint satisfaction problems (CSPs) are two examples of
concrete domains respectively over the domains of discourse of integer and real numbers [RvBW06].
As the definitions for both are similar, we let A be either the set Z or R. A CSP is a tuple ⟨𝑋, 𝐷,𝐶⟩
where 𝑋 is a finite set of variables, 𝐷 the set of values of the variables, and 𝐶 a set of relations
over the variables. For each variable 𝑥𝑖 ∈ 𝑋 , we have 𝐷𝑖 ⊆ A. The tuple ⟨𝑋, 𝐷,𝐶⟩ is a structured
presentation of the logical formula

∧
1≤𝑖≤𝑛 𝑥𝑖 ∈ 𝐷𝑖 ∧

∧
1≤𝑖≤ |𝐶 | 𝐶𝑖 . The term 𝑥𝑖 ∈ 𝐷𝑖 is interpreted

as J𝑥𝑖 ∈ 𝐷𝑖K♭
def
= {𝑎 ∈ Asn | 𝑎(𝑥𝑖) ∈ 𝐷𝑖 }. The constraints are interpreted in the standard structure of

arithmetic. For instance, for the constraint 𝑥 < 𝑦, we have J𝑥 < 𝑦K𝑃 = {(𝑎, 𝑏) ∈ A × A | 𝑎 < 𝑏}.

In the case of an optimization problem, the solutions are further restricted to be the best according
to an optimization objective. The best solutions are not necessarily unique, as it is often the case in
multi-objective optimization, where best solutions form a Pareto front. Nevertheless, it does not
change the definition of the concrete domain. We investigate optimization problems in Section 7.

In the following, abstract elements will represent formulas with a finite number of variables. It is
useful to define a completion of a set of partial functions to a set of total functions (the concrete
domain).

Definition 3.4 (Completion of a partial solutions set). We define 𝛾 : P([𝑋 ↛ 𝑉])𝜕 → 𝐷♭ the
completion of a set of partial assignments 𝑃 to the values of all the variables in 𝑋 not occurring in
𝑃 .

𝛾 (𝑃) = {𝑎 ∈ Asn | ∃𝜎 ∈ 𝑃, ∀𝑥 ∈ 𝜋1 [𝜎], 𝜎 (𝑥) = 𝑎(𝑥)}

The concrete domain is an extensional mathematical formulation of the solution space of a
logical formula. However, it is often too costly to directly manipulate due to its very large state
space, or even impossible in the case of infinite domains such as with real numbers. This is why we
need more compact representations and approximations of the concrete domain. This is the role of
abstract domains.

3.2 Abstract domain
In abstract interpretation, an abstract domain is a partially ordered set equipped with useful
operations for programs analysis. This notion has been adapted to constraint reasoning, where
the main novelty is the addition of a split operator. Our approach extends the abstract framework
described in [PMTB13]—specialized to over-approximations and continuous domains—to under-
approximations and discrete domains. In this paper, “abstract domain” will refer to this modified
notion of abstract domain for constraint reasoning that is defined as follows.

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

0:12 P. Talbot, A. Jung, K. Ueda, and P. Van Roy

Definition 3.5 (Abstract domain). An abstract domain for constraint reasoning is a lattice ⟨𝐴, ≤,
⊓,⊔,⊥,⊤⟩ where 𝐴 is a set of computer-representable2 elements equipped with the following
operations:
• 𝛾 : 𝐴→ 𝐷♭ is a monotonic concretization function mapping an abstract element to its set of
solutions.
• J.K : Φ ↛ 𝐴 is a partial interpretation function approximating the set of solutions of a formula
to an element of the abstract domain3.
• refine : 𝐴→ 𝐴 is an extensive function refining the approximation of the interpreted formula.
• split : 𝐴 → 𝐴𝑆 is an extensive function, i.e., ∀𝑎 ∈ 𝐴, {𝑎} ≤𝑆 split (𝑎), dividing an element
of an abstract domain into a set of sub-elements. An element 𝑎 ∈ 𝐴 such that split (𝑎) is a
singleton is called unsplittable. We require split (𝑎) = {𝑎} for all unsplittable elements.

The constraint language of an abstract domain is the domain of the function J.K. We will say
that 𝜑 is interpretable in 𝐴 if J𝜑K is defined. We interpret conjunctive formulas and truth values as
follows in an abstract domain 𝐴:

JtrueK def
= ⊥𝐴 JfalseK def

= ⊤𝐴 J𝜑1 ∧ 𝜑2K
def
= J𝜑1K𝐴 ⊔𝐴 J𝜑2K𝐴

Indeed, all of the following domains view the join operator as adding conjunctive information
in the lattice. Moreover, the interpretation function assumes that free variables are existentially
quantified, since we usually want to find the models of the formula.
An abstract domain can be classified into two categories if it under- or over-approximates the

set of solutions of the interpreted formula. We adapt these properties from abstract interpretation
in our framework as follows. For all interpretable formulas 𝜑 :

∃𝑖 ∈ N, (𝛾 ◦ refine𝑖 ◦ J.K) (𝜑) ⊆ J𝜑K♭ (under-approximation) (1a)

∀𝑖 ∈ N, (𝛾 ◦ refine𝑖 ◦ J.K) (𝜑) ⊇ J𝜑K♭ (over-approximation) (1b)

We expect that successive applications of the refinement operator eventually leads to an under-
approximation. Although we aim at computing an under-approximation, the initial element J𝜑K
usually over-approximates J𝜑K♭. Otherwise, if J𝜑K under-approximates J𝜑K♭, no further refinement
step is needed. Due to the extensive property of refine, once an element 𝑎 ∈ 𝐴 under-approximates𝜑 ,
then any element refine𝑖 (𝑎) also under-approximates 𝜑 . The existential quantifier in the definition
reflects these observations. In contrast, over-approximations are defined with a universal quantifier.
In this case, given an element 𝑎 ∈ 𝐴 over-approximating a formula, each element refine𝑖 (𝑎) refining
𝑎 must over-approximate 𝜑 as well.

From a computational viewpoint, computing an under-approximation is deeply connected to the
termination of the solving procedure. According to the existential quantifier ∃𝑖 ∈ N, there must be
a finite number of refinement steps in order to obtain an under-approximation. There is no such
restriction on the computation of over-approximations: we can infinitely refine an element in order
to obtain a more precise over-approximation. Hence, we can terminate the refinement after any
number of iterations, depending on the precision needed, because every element in the sequence
over-approximates the formula.
An abstract domain is under-approximating if it satisfies equation (1a) for all interpretable

formulas, and over-approximating if it satisfies equation (1b). If it satisfies both equations, we
2Each element of𝐴 occupies a finite amount of memory. Nevertheless,𝐴might contain an infinite number of finite elements.
3The interpretation function is usually called transfer function in the context of program analysis. Alternatively, this function
could be total and every unsupported formula mapped to ⊥ which is a correct over-approximation. However, it prevents us
from distinguishing between tautological formulas (since JtrueK = ⊥) and unsupported formulas. In the first case, we wish
to interpret the formula in 𝐴, while in the second case we prefer to look for another, more suitable, abstract domain.

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

Abstract Constraint Programming
draft v0.1 0:13

say that the abstract domain is exact. When the approximation kind matters, we denote under-
approximating abstract domains and operators with𝐴↓, J.K↓, . . ., and over-approximating ones with
𝐴↑, J.K↑,

3.3 Propagate and search
In abstract interpretation, the computation of an approximation is guided by the program to analyze.
Therefore, an abstract analyser carries an abstract element which, at any stage, approximates the
semantics of the program analysed so far. One major difference in constraint programming is
the presence of backtracking. It splits an element into several sub-elements which are refined
individually. Once an element cannot be split anymore, the solving procedure backtracks and
refines another element. Splitting is necessary when the refinement operator cannot reach an
under-approximation on its own, or to improve the precision of the over-approximation. We define
this procedure over an abstract domain 𝐴 as follows.
1: function solve(𝑎) : 𝐴→ P(𝐴)
2: 𝐵 ← (split ◦ refine) (𝑎)
3: if |𝐵 | ≤ 1 then return 𝐵
4: else
5: return

⋃
𝑏𝑖 ∈𝐵 solve(𝑏𝑖)

6: end if
7: end function

This algorithm follows the usual solving pattern in constraint programming of propagate and search
(see, e.g., [Apt03, Tac09]). We infer new information and improve the current approximation with
refine, and then divide the problem into sub-problems with split. A base case is reached when the
element becomes unsplittable or empty. We obtain a set of approximations of a formula 𝜑 in an
abstract domain 𝐴 with solve(J𝜑K).
This algorithm allows us to lift the refinement operator of an abstract domain to be under-

approximating, although it might not be under-approximating initially. In this respect, we might be
tempted to adapt the definition of under-approximation to this particular case. We will introduce
in Section 6 the search tree abstract domain which has solve as a refinement operator. We will
study its under- and over-approximations properties in detail at that time. Thanks to the search
tree abstract domain, there is no need to adapt the definitions of under- and over-approximation to
take into account the split function.

3.4 Relationship between approximations and satisfiability
The crux of constraint reasoning is generally to establish the satisfiability or unsatisfiability of a for-
mula. We connect under-approximation to satisfiability and over-approximation to unsatisfiability.
Let 𝑎 ∈ 𝐴 be an element under-approximating the formula 𝜑 . An under-approximation is

not suited to prove unsatisfiability because it does not necessarily explore the full state space.
Nonetheless, whenever 𝛾𝐴 (𝑎) ⊆ J𝜑K♭ and 𝛾𝐴 (𝑎) ≠ {}, we can deduce that 𝜑 is satisfiable, and that
all elements in 𝛾𝐴 (𝑎) are solutions of 𝜑 . In contrast, we cannot deduce from an over-approximating
element 𝑎 ∈ 𝐴 that 𝜑 is satisfiable because 𝛾𝐴 (𝑎) ⊇ J𝜑K♭ and J𝜑K♭ could be empty. Nonetheless,
over-approximations are helpful to deduce unsatisfiability since {} = 𝛾𝐴 (𝑎) ⊇ J𝜑K♭ only if J𝜑K♭ = {}.

The issue with these formulations is that they rely on the concretization function and concrete
interpretation which are “theoretical functions” that might not exist in practice. We must rely
on functions which are computable to classify abstract elements into satisfiable and unsatisfiable
elements. This classification task is the second role of the split function.

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

0:14 P. Talbot, A. Jung, K. Ueda, and P. Van Roy

Let 𝑎 = refine𝑖 (J𝜑K) be an element under-approximating 𝜑 . Without loss of generality, we might
further suppose that 𝑎 is a fixed point of refine because it is generally not useful to further refine
an under-approximation. Hence, we would like to classify the fixed points of refine as being empty
(𝛾 (𝑎) = {}) or not. The split function is used for this purpose as follows:

split (𝑎) ≠ {} ⇒ 𝛾 (𝑎) ≠ {} ∧ 𝛾 (𝑎) ⊆ J𝜑K♭ (2)

where 𝑎 is a fixed point of refine. To put it concretely, if split (𝑎) ≠ {} then 𝑎 is a solution of 𝜑 ,
otherwise we cannot conclude anything.

The case of over-approximation is dual and expressed as follows:

split (𝑎) = {} ⇒ 𝛾 (𝑎) = {} (3)

where 𝑎 = refine𝑘 (J𝜑K) for any 𝑘 ∈ N. This property guarantees that 𝑎 has no solution if the set
split (𝑎) is empty.

4 DOMAIN OF A VARIABLE
The domain of a variable is an abstract domain in which formulas with a single variable can be
interpreted. As the variable’s name is not represented explicitly in these domains, without loss
of generality, we arbitrarily fix the name of the variable to the underscore symbol _. It allows us
to pass well-formed logical formulas to their interpretation functions. For instance, _ > 4 can be
simply understood by replacing _ with a more traditional variable name, e.g., 𝑥 > 4. We see later in
Section 5.1 a construction to index any domain of variable with a variable name. We first introduce
two standard constructions to represent the domain of a variable without an ordering requirement
on the universe of discourse. Then, we observe that if the universe of discourse can be viewed as a
lattice, several additional constructions, potentially more efficient, can be proposed.

4.1 Constructions over unordered universe of discourse
We can obtain a lattice by equipping the universe of discourse with bottom and top elements, and
by leaving its elements unordered.

Definition 4.1 (Flat lattice). Let 𝑆 be a set, the universe of discourse, then FL(𝑆) = {⊥} ⊕ 𝑆 ⊕ {⊤}
is an abstract domain where:
• Lattice operations are inherited from the linear sum (Def. 2.5(5)), and ⊥,⊤ ∉ 𝑆 ,

• 𝛾 (𝑎) def= 𝛾 (𝑃) with 𝑃 =

{{_ ↦→ 𝑎}} if 𝑎 ∉ {⊥,⊤}
{} if 𝑎 = ⊤
{{_ ↦→ 𝑣} | 𝑣 ∈ 𝑆} if 𝑎 = ⊥

• J_ = 𝑣K def
= 𝑣 if 𝑣 ∈ 𝑆 ,

• split↓(𝑎)
def
=

{} if 𝑎 = ⊤
{𝑎} if 𝑎 ∉ {⊥,⊤}
𝑄 if 𝑎 = ⊥ and 𝑄 a finite subset of 𝑆

• split↑(𝑎)
def
=

{} if 𝑎 = ⊤
{𝑎} if 𝑎 ∉ {⊥,⊤}
𝑆 if 𝑎 = ⊥ and 𝑆 is finite
{⊥} otherwise

• refine(𝑎) def= 𝑎.

The concretization function maps each element of FL to its concrete set of solutions using the
completion 𝛾 (Definition 3.4).

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

Abstract Constraint Programming
draft v0.1 0:15

The operator split comes in two versions if the base set 𝑆 is infinite. It under-approximates the
state space by taking a finite subset of 𝑆 . The over-approximating version does not attempt to split
⊥ if 𝑆 is infinite, otherwise it would result in a set that does not belong to FL(𝑆)𝑆 (the image of
split). We illustrate in Figure 3a the flat lattice derived from the set 3 = {0, 1, 2}.

Another common variable’s domain is the powerset construction which allows us to represent a
collection of possible values, whereas a flat lattice stores none, one or all elements at a time.

Definition 4.2 (Powerset variable’s domain). Let 𝑆 be a set. We take the set of finite subsets of 𝑆 to
form the lattice PVD(𝑆) = ⟨Pf (𝑆), ⊇,∩,∪⟩ with ⊤

def
= {} and without bottom element. PVD(𝑆) is an

exact abstract domain where (𝑇 ∈ Pf (𝑆)):
• 𝛾 (𝑇) def= 𝛾 ({{_ ↦→ 𝑣} | 𝑣 ∈ 𝑇 }),
• J_ ∈ 𝑇 K def

= 𝑇 if 𝑇 is finite,
• J_ ∉ 𝑇 K def

= 𝑆 \𝑇 if 𝑇 is cofinite,

• split (𝑇) def=

{} if |𝑇 | = 0
{𝑇 } if |𝑇 | = 1
{𝑇 \ 𝑅, 𝑅} with 𝑅 ⊂ 𝑇 otherwise

• refine(𝑇) def= 𝑇 .

Many formulas can be interpreted extensionally in this abstract domain, but this is often not very
efficient. We require every set 𝑇 ∈ PVD(𝑆) to be finite because it needs to be representable in a
computer. Nevertheless, the solutions set 𝛾 (𝑄) can be infinite if the base set 𝑆 is infinite. As with
the flat lattice, various split operators are possible depending on which subset of 𝑇 is selected.

The powerset construction is notably used to represent the domains of discourse of finite integers
and sets. InMinion [GJM06], they represent integer variables with bit vectors whenever the largest
integer in the variable’s domain is small enough. This allows them to take advantage of bitwise
operations and improve memory consumption. Another example is given by the universe of
discourse of sets P(𝑆) for any set 𝑆 . We can represent the domain of a set variable as a set of sets.
The construction is thus PVD(P(𝑆)) where P(𝑆) is the (unordered) universe of discourse. The
interpretation function can be extended to support the subset notation (with 𝑇 ∈ Pf (𝑆)):

J_ ⊆ 𝑇 K = P(𝑇) and J_ ⊇ 𝑇 K = (P(𝑆) \ P(𝑇)) ∪𝑇 if 𝑆 is finite

The language CLPS-B [BLP02] is based on this extensional representation of set. However, as the
powerset representation grows exponentially in the size of the underlying set 𝑆 , this representation
is only practical for sets 𝑆 of small cardinalities.

4.2 Constructions over ordered universe of discourse
We can devise new constructions taking advantage of the ordering of a universe of discourse, when
one is available. For instance, a simple arithmetic constraint such as 𝑥 ≥ 4 cannot be represented
effectively in the previous abstract domains. Nevertheless, if we equip the universe of discourse of
integer numbers with its natural order ⟨N, ≤⟩, we can represent this constraint by the element 4,
whichmeans that the value of 𝑥 is any number equal to or greater than 4. The formal characterization
of this idea is to view the concrete solution space of an abstract element as its up-set, i.e., the
abstract element and all the elements above it. As a first example, we consider an abstract domain
for the universe of discourse of integers.

Definition 4.3 (Increasing integers). We denote the lattice of increasing integers Z♯ = {−∞}⊕⟨Z, ≤
⟩ ⊕ {∞} = ⟨Z ∪ {−∞,∞}, ≤,max,min,−∞,∞⟩ where ≤ is the natural arithmetic ordering. Z♯ is an
exact abstract domain with the following operators (with 𝑣 ∈ Z ∪ {−∞,∞}):

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

0:16 P. Talbot, A. Jung, K. Ueda, and P. Van Roy

• 𝛾 (𝑎) def= 𝛾 ({{_ ↦→ 𝑣} | 𝑣 ∈ Z, 𝑣 ≥ 𝑎}),
• J_ ≥ 𝑣K def

= 𝑣 and J_ > 𝑣K def
= 𝑣 + 1,

• split (𝑎) def=
{
{𝑎} if 𝑎 ≠ ∞
{} if 𝑎 = ∞

• refine(𝑎) def= 𝑎.
We note that 𝑠𝑝𝑙𝑖𝑡 (J_ ≥ ∞K) = {} since no integer is greater or equal to infinity.

Similarly, we define the abstract domain Q♯ = ⟨Q ∪ {−∞,∞}, ≤,max,min,−∞,∞⟩ for rational
numbers, with the difference that J_ > 𝑣K cannot be an exact interpretation since the set Q is dense.
Although elements in Q are representable in a computer as a pair of integers, real numbers might
not be. The usual representation is to approximate real numbers with floating point numbers.

Definition 4.4 (Increasing floating point numbers). The lattice of increasing floating point numbers
F♯ = ⟨F \ NaN, ≤,max,min,−∞,∞⟩, where F is defined according to IEEE 740 standard [IEE19]
without the set NaN of not a number values4. We write ⌊𝑣⌋ (resp. ⌈𝑣⌉) the function returning the
closest floating point number less or equal to 𝑣 (resp. greater or equal to 𝑣). F♯ is an abstract domain
with the following operators (with 𝑣 ∈ R):
• 𝛾 (𝑎) def= 𝛾 ({{_ ↦→ 𝑣} | 𝑣 ∈ R, 𝑣 ≥ 𝑎}),
• J_ ≥ 𝑣K↑

def
= ⌊𝑣⌋ and J_ ≥ 𝑣K↓

def
= ⌈𝑣⌉,

• J_ > 𝑣K↑
def
= ⌊𝑣⌋,

• J_ > 𝑣K↓
def
= ⌈𝑣⌉ if ⌈𝑣⌉ ≠ 𝑣 , otherwise J_ > 𝑣K↓

def
= succ(𝑣) where succ(𝑣) is the next repre-

sentable floating point number greater than 𝑣 .
• split and refine defined similarly than in Definition 4.3.

These three arithmetic abstract domains of increasing numbers possess a total order. It is also
possible to define abstract domains for partially ordered domains of discourse. An example is the
universe of discourse of sets.

Definition 4.5 (Increasing sets). Let 𝑆 be a set. Then 𝑆♯ = ⟨Pf (𝑆), ⊆,∪,∩⟩ with⊥
def
= {} and without

a top element unless 𝑆 is finite. 𝑆♯ is an abstract domain with the following operators:

• 𝛾 (𝑄) def= 𝛾 ({{_ ↦→ 𝑇 } | 𝑇 ∈ ↑𝑄}),
• J_ ⊇ 𝑄K def

= 𝑄 if 𝑄 ∈ Pf (𝑆),
• split (𝑄) def= {𝑄},
• refine(𝑇) def= 𝑇 .

Similarly to PVD(P(𝑆)), 𝑆♯ is able to represent the universe of discourse of sets. The difference
lies in the representation of the sets. For instance, let the universe of discourse be 𝑆 = {1, 2, 3}.
The constraint _ ⊇ {1} is represented by the element {{1}, {1, 2}, {1, 3}, {1, 2, 3}} in PVD(P(𝑆))
and by {1} in 𝑆♯. All the sets that include {1} are implicitly represented in 𝑆♯, whereas they are
explicitely represented in PVD(P(𝑆)). The tradeoff for this compact representation is that 𝑆♯ can
only interpret constraints of the form _ ⊇ 𝑄 , whereas PVD(P(𝑆)) also supports _ ⊆ 𝑄 and _ ⊈ 𝑄 .
These abstract domains can only represent constraints bounding a variable in one direction.

For instance, Z♯ supports _ ≥ 𝑣 but not _ ≤ 𝑣 . By taking the dual of any of these lattices, we gain
support for the dual constraints. Therefore, by considering the Cartesian product of an abstract
domain and its dual, we can bound the possible values of a variable from below and above. This
4From a practical viewpoint, we might assume that NaN values generate exceptions, and thus are never manipulated.

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

Abstract Constraint Programming
draft v0.1 0:17

⊤

0 1 2

⊥
(a) Flat lattice of the set 3.

[0..2]

[0..1] [1..2]

[0..0] [1..1] [2..2]

[1..0] [2..1]

[2..0]

(b) Lattice of intervals I(3).

Fig. 3. Examples of lattices of variable’s domain.

is given by a general construction called interval lattice. Interval lattice has been studied in the
context of combinatorial solving by Fernández and Hill [FH04], and we extend their definition
to abstract domain. An advantage of this construction is that intervals of any partially ordered
universe of discourse, such as sets, is supported. In order to generically define under- and over-
approximating version of this abstract domain, without unnecessarily duplicating definitions,
we annotate operators with ↕ ∈ {↑, ↓}. The definition can then be instantiated to an under- or
over-approximation by choosing the appropriate arrow.

Definition 4.6 (Interval abstract domain). Let 𝐴 be an abstract domain and 𝐴𝜕 its dual. Then
I(𝐴) = ⟨𝐴 ×𝐴𝜕, ≤,⊔,⊓,⊥,⊤⟩ is an abstract domain where:
• ≤,⊔,⊓,⊥,⊤ are directly inherited from the Cartesian product,
• We write [𝑙 ..𝑢] the interval (𝑙, 𝑢) ∈ I(𝐴),
• 𝛾 ([𝑙 ..𝑢]) def= 𝛾𝐴 (𝑙) ∩ 𝛾𝐴𝜕 (𝑢),
• J_ □ 𝑣K↕

def
= [⊥𝐴 ..𝑢] whenever 𝑢 = J_ □ 𝑣K𝐴𝜕

↕ is defined, where □ ∈ {≤, <, ⊆},
• J_ □ 𝑣K↕

def
= [𝑙 ..⊤𝐴𝜕] whenever 𝑙 = J_ □ 𝑣K𝐴↕ is defined, where □ ∈ {≥, >, ⊇},

• J_ = 𝑣K↕ = J_ ≥ 𝑣 ∧ _ ≤ 𝑣K↕ if defined, otherwise J_ = 𝑣K↕ = J_ ⊆ 𝑣 ∧ _ ⊇ 𝑣K↕.
• refine↕([𝑙 ..𝑢])

def
= [refine𝐴↕ (𝑙)..refine

𝐴𝜕

↕ (𝑢)],

• split↕([𝑙 ..𝑢])
def
=

{} if 𝑙 >𝐴 𝑢 ∨ split𝐴↕ (𝑙) = {} ∨ split

𝐴𝜕

↕ (𝑢) = {}
{[𝑙 ..𝑢]} if 𝑙 = 𝑢
{[𝑙 ..𝑢 ′], [𝑙 ′..𝑢]} where 𝑢 ′ = J_ ≤ 𝑚K𝐴𝜕

↕ , 𝑙
′ = J_ > 𝑚K𝐴↕ , 𝑙 ≤𝐴 𝑚 <𝐴 𝑢

Example 4.7 (Interval abstract domains). The lattice of integer intervals I(Z♯) is an exact abstract
domain. We illustrate this lattice in Figure 3b over the set of integers 3 = {0, 1, 2}. We note that the
interval [0..0] contains more information than [0..2]. It captures the concept of a variable’s domain
in a CSP: we declare a variable with a domain between 0 and 2 because we do not know its exact
value. For each 𝑥 ∈ {[1..0], [2..1], [2..0]}, we have split (𝑥) = {}. Alternatively, we could group these
intervals into a single ⊤ element. Another interesting characteristics of intervals is to allow the
representation of infinite sets such as some subsets of real numbers. In continuous CSP, the standard
technique is to surround the real number, representing a solution, by a floating point interval.
Its structure is formally defined by the abstract domain I(F♯), and has been studied in various

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

0:18 P. Talbot, A. Jung, K. Ueda, and P. Van Roy

constraint languages such as CLP(BNR) [Old93], Newton [VHM95] and Numerica [VHMD97]. The
challenge of computing with floating point intervals is to design refinement operators that compute
tight bounds of arithmetic expressions, see, e.g., [SBB+18]. It must be noted that dealing with round-
off errors is a whole research area that we do not discuss here. Interval of sets, captured in the
abstract domainI(𝑆♯), has been extensively studied inConjunto [Ger94] andCLP(SET) [DPPR00].

This section only shows a fraction of the existing structured domains. For instance, it is possible
to consider open interval as well, which allows to exactly interpret constraints such as 𝑥 >

𝑣 with 𝑣 ∈ F♯ as the element (𝑣,∞]. This extension does not pose further challenges and is
formally defined in [FH04]. Another example is the set representation with cardinality, studied in
Cardinal [Aze07]. The universe of discourse of graphs, with an interval variable’s domain, has been
proposed in [DDD05]. The domain of stream targets infinite sequence of data. Interestingly, an
exact solving algorithm is given in [LLLS11] for𝜔-regular languages which are recognized by Büchi
automata. This is an example of infinite domain which is both an under- and over-approximation.
For non-regular languages, an over-approximating solving algorithm is studied in [BTM11]. There
are many other domains of discourse including Boolean (SAT solving), Herbrand universe (notably
useful in logic programming, see [Rey70, Plo70] for its corresponding lattice structure, and more
recently [GNS+16, Cou20] for its corresponding abstract domains), string [Raj94], function [Lau78,
Hni03] or relation [Lau78, FPÅ04]. We refer to the survey of Gervet in [RvBW06] (Chapter 17) for
a more exhaustive account of structured domains.

5 PROPAGATION PROBLEM
We now tackle formulas with multiple variables by introducing abstract domain able to represent
conjunctive collection of information. By “conjunctive collection of information”, we mean a set
of elements such that if an element is false, then the whole set is false. In abstract interpretation,
abstract domains over multiple variables are divided in two categories:

• Non-relational abstract domains represent relations on variables individually from each other.
More precisely, it only supports atoms with single variable in a formula.
• Relational abstract domains are more expressive as they can represent relations between
variables. Hence, atoms with multiple variables are supported. However, as for variable’s
domain, some relational abstract domains can only represent atoms within a restricted
constraint language.

Relational abstract domains are numerous in the field of abstract interpretation. We give a few
examples, ordered from the less expressive ones to the more expressive ones, which are also more
computationally intensive (𝑥,𝑦 are variables and 𝑐 a constant):

• Octagon [Min06] for constraints of the form
∧±𝑥 ± 𝑦 ≤ 𝑐 , also known as difference logic, or

unit two variables per inequality (UTVPI) domain [DMP91, JMSY94, HS97].
• Two variables per inequality [SKH03] for constraints of the form

∧
𝑐1𝑥1 + 𝑐2𝑥2 ≤ 𝑐 .

• Polyhedron [CH78] for linear constraints of the form
∧∑

1≤𝑖≤𝑛 𝑐𝑖𝑥𝑖 ≤ 𝑐 , which is central to
the linear programming paradigm.
• We note that variants of these domains usually exist for integers, floating point numbers and
rational numbers.

These abstract domains fit in our framework. For instance, octagon and polyhedron have been
studied in a similar abstract constraint reasoning framework in [PTB14, TCMT19] and [ZMM+19]
respectively.

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

Abstract Constraint Programming
draft v0.1 0:19

In this section, we first introduce a non-relational store of variables abstract domain, useful to
model array of variables. We then broaden the scope of relational abstract domains to combinatorial
solving by integrating ideas from the field of constraint programming. In particular, we define an
abstract domain in which elements are collection of refinement operators. Refinement operators
are well-known in constraint programming under the name of propagator functions. Moreover,
we study conditions which preserve under- and over-approximation when combining refinement
operators. It gives the foundation for a bridge between the abstract interpretation and constraint
programming fields.

5.1 An abstract domain for collection of variables
Until now, we supposed a variable named _ in the interpretation function, which is artificial because
a variable’s domain does not represent the name of the variable explicitly. Following standard
practice, we rely on the lattice of partial functions to represent a store of variables.

Definition 5.1 (Store of variables). Let 𝑋 be an arbitrary set and 𝐴 be a variable’s domain. Then
we write the store construction of 𝐴 as Store(𝐴) = ⟨[𝑋 ↛ 𝐴], ≤,⊔,⊓,⊥,⊤⟩ where:

• The usual lattice operations are inherited from the pointwise lifting (Def. 2.5(4)).
• 𝛾 (𝜎) def= {𝑎 ∈ Asn | ∀𝑥 ∈ 𝜋1 [𝜎], 𝑎[𝑥 ↦→ _] ∈ 𝛾𝐴 (𝜎 (𝑥))},
• J𝜑K def

= {𝑥 ↦→ J𝜑 [𝑥 ↦→ _]K𝐴) if FV (𝜑) = {𝑥},

• split (𝜎) def=

{} if ∃𝑥 ∈ 𝜋1 [𝜎], |split𝐴 (𝜎 (𝑥)) | = 0
{𝜎} if ∀𝑥 ∈ 𝜋1 [𝜎], |split𝐴 (𝜎 (𝑥)) | = 1
{{𝑥 ↦→ 𝑎′} ⊔ 𝜎 | 𝑎′ ∈ split𝐴 (𝜎 (𝑥))} if ∃𝑥 ∈ 𝜋1 [𝜎], |split𝐴 (𝜎 (𝑥)) | > 1

• refine(𝜎) def= {{𝑥 ↦→ refine𝐴 (𝜎 (𝑥))} | 𝑥 ∈ 𝜋1 [𝜎]}

In the following we view an element of Store(𝐴) either as a partial function from 𝑋 to 𝐴, or as a set
of pairs in 𝑋 ×𝐴, called the graph of the function.

The concretization function deserves an additional explanation. We remove all the assignments
𝑎 ∈ Asn where, for a variable 𝑥 , there is no concrete solution 𝑎(𝑥) in 𝛾𝐴 (𝜎 (𝑥)). A small technical
step is to rename the variable 𝑥 in the assignment 𝑎 with the special name _.

Example 5.2. Let 𝑋 be the set of variables {𝑥,𝑦}, and 𝑆𝐼 be the store of integers interval
Store(I(Z♯)). The stores 𝑠1 = {𝑥 ↦→ [0..2]} and 𝑠2 = {𝑥 ↦→ [1..2], 𝑦 ↦→ [3..4]} are elements
of 𝑆𝐼 . In contrast, the store {𝑥 ↦→ ⊥, 𝑦 ↦→ [1..2], 𝑦 ↦→ [0..2]} does not belong to 𝑆𝐼 because there
are two variables with a location 𝑦. Also, notice that the order of the store is not the set inclusion.
Indeed, 𝑠1 ≤ 𝑠2 is not defined under the set inclusion order, but it is intuitive that the store 𝑠2
contains more information than 𝑠1 since we have [0..2] ≤ [1..2] and 𝑠1 does not contain elements
that are not in 𝑠2.

5.2 Propagation problem abstract domain
Instead of developing a full-fledged abstract domain for a constraint language, constraint program-
ming focusses on the careful design of many individual refinement operators, each implementing a
particular constraint. In the context of constraint programming, the refinement operator is called a
propagator. We consider the two concepts identical as a propagator is also an extensive function
𝑝 : 𝐴→ 𝐴 over an abstract domain 𝐴. A propagation-based constraint solver consists of two key
ingredients: propagators and a propagation engine. We start with propagators by defining the
lattice Prop of all propagators as follows.

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

0:20 P. Talbot, A. Jung, K. Ueda, and P. Van Roy

Definition 5.3 (Propagators). Let 𝐴 be an abstract domain. We denote Prop ⊂ [𝐴 → 𝐴] the set
of all extensive functions on 𝐴, namely propagators. Prop inherits the lattice operations of the
pointwise lifting (Definition 2.5). In particular, we have 𝑝1 ⊔ 𝑝2 = _𝑎.𝑝1 (𝑎) ⊔𝐴 𝑝2 (𝑎).

The pointwise ordering on Prop captures the notion of propagator strength, in which we have 𝑝1 ≤
𝑝2 iff 𝑝2 infers more information than 𝑝1. The concomitant notion of consistency refers to properties
achieved on the underlying abstract domain. Consistency is helpful to classify propagators strength
over a same constraint. It has been widely studied in the field of constraint programming in order
to compare the efficiency and pruning ratio of propagators. We will not need this notion in this
paper, and we refer to [Apt03, Dec03, Lec09] for in-depth reviews of consistencies. Also, we point
out Scott’s dissertation [Sco16] which presents various consistencies as Galois connections in the
framework of abstract interpretation.
A constraint solver consists of a collection of propagators on a fixed abstract domain, usually

the store construction of a variable’s domain of interest, e.g., the store Store(I(Z♯)). We illustrate
the concept of propagators through two examples.

Example 5.4 (“Greater than” propagator). Propagators are defined over a base abstract domain 𝐴,
and their exact definitions might vary depending on 𝐴. Nevertheless, it is still possible to define
a propagator in a generic way. We show an arithmetic propagator for the constraint 𝑥 > 𝑦, that
assumes𝐴 provides the operators ⌊𝑥⌋𝑎 and ⌈𝑦⌉𝑎 to respectively retrieve the lower and upper bound
of a variable 𝑥 in 𝑎 ∈ 𝐴.

J𝑥 > 𝑦K = _𝑎.𝑎 ⊔𝐴 J𝑥 > ⌊𝑦⌋𝑎K𝐴 ⊔𝐴 J𝑦 < ⌈𝑥⌉𝑎K𝐴
This propagator is defined generically for a large number of universe of discourse, such as integer,
floating-point or rational number, but also sets if we equate >

def
= ⊂ and <

def
= ⊃. Moreover, this

technique in conjunction with a general propagation algorithm such as HC4 [BGGP99], allows us
to support a large constraint language with a single propagator.

Example 5.5 (Constructive disjunction [VHSD91]). Let 𝜑1 and 𝜑2 be logical formula implemented
by the propagators 𝑝1 and 𝑝2 over an abstract domain𝐴. The constructive disjunction is a propagator
for disjunctive formula that relies on the meet operator of 𝐴:

J𝜑1 ∨ 𝜑2K = _𝑎. 𝑝1 (𝑎) ⊓𝐴 𝑝2 (𝑎) with J𝜑𝑖K = 𝑝𝑖 , 𝑖 ∈ {1, 2}
Information both discarded by 𝑝1 and 𝑝2 will be removed from 𝑎. It is useful in scheduling problems
for precedence constraints of the form 𝑥 +𝑦 ≤ 𝑐1 ∨𝑦 + 𝑧 ≤ 𝑐2. To further exemplify, consider that 𝑦
is defined on integer intervals, with an initial domain of [1..5]. If 𝑥 +𝑦 ≤ 𝑐1 shrinks the domain of 𝑦
to [2..4], and 𝑦 +𝑧 ≤ 𝑐2 to [1..4], then we can safely prune the domain of 𝑦 to [2..4] ⊓ [1..4] = [1..4]
without committing to a branch of the disjunction. Note that the formulas in the disjunction
must share variables otherwise no additional pruning can be achieved in comparison to a normal
disjunction. This technique can be applied to many logical connectors as shown in [GMS20].

In addition to the design of propagators, the second key ingredient of a propagation-based
constraint solver is the propagation engine. The propagation engine computes a simultaneous fixed
point of a collection of propagators {𝑝1, . . . , 𝑝𝑛}. That is, an element 𝑎 ∈ 𝐴 such that 𝑝𝑖 (𝑎) = 𝑎

for all 1 ≤ 𝑖 ≤ 𝑛. This fixed point is computable only if it is reachable in a finite number of steps,
otherwise we must approximate it. It is always computable in the case of discrete constraint solving
over finite domains [Apt99, Apt00, SS08, Tac09]. In continuous constraint solving, the termination
criterion is usually based on a precision measure: we stop refining an element when it is small
enough [Kea87, FH04, CJ09]. We introduce below an abstract domain, called propagation problem,
encapsulating the propagation step as a refinement step. In the terms of our framework, this abstract

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

Abstract Constraint Programming
draft v0.1 0:21

domain lifts the refinement operator to the structure of the lattice itself. It implies that refine can
evolve dynamically as the computation progresses. Moreover, an important observation is that
refine is not required to be idempotent. Therefore, we can view it as a function producing a stream
of increasingly refined approximations, i.e., refine(𝑎) ≤ refine2 (𝑎) ≤ It enables users to choose
the right termination criterion according to their requirements and the underlying abstract domain,
without forcing it inside our abstract domain.

Definition 5.6 (Propagation problem). Let𝐴 be an abstract domain. Then the propagation problem
PP = ⟨𝐴 × Prop𝐻 , ≤,⊔,⊓,⊥,⊤⟩ is an abstract domain with the following operators:
• The lattice operations are inherited from the Cartesian product and the Hoare construction.
• 𝛾 ((𝑎, 𝑃)) def= 𝛾𝐴 (𝑎)

• J𝜑K def
=

{
(J𝜑K𝐴, {refine𝐴}) if J𝜑K𝐴 is defined
(⊥𝐴, {refine𝐴, 𝑝}) where 𝑝 is a propagator implementing 𝜑

• split ((𝑎, 𝑃)) def= {(𝑎′, 𝑃) | 𝑎′ ∈ split𝐴 (𝑎)}
• refine𝑖 ((𝑎, {𝑝1, . . . , 𝑝𝑛}))

def
= (𝑝𝑖 (𝑎), {𝑝1, . . . , 𝑝𝑛}),

• refineseq ((𝑎, {𝑝1, . . . , 𝑝𝑛}))
def
= ((𝑝1 ◦ . . . ◦ 𝑝𝑛) (𝑎), {𝑝1, . . . , 𝑝𝑛}),

• refinepar ((𝑎, {𝑝1, . . . , 𝑝𝑛}))
def
= ((𝑝1 ⊔ . . . ⊔ 𝑝𝑛) (𝑎), {𝑝1, . . . , 𝑝𝑛}).

We discuss several aspects surrounding this definition including the choice of the Hoare construc-
tion instead of the powerset completion, the concretization function, the split function, the multiple
refinement operators, the additional monotone property of propagators, and the strengths and weak-
nesses of the propagator approach. The next sections will focus on under- and over-approximations
theorems in a slightly more general setting.
Traditionally, a set of propagators is represented by the powerset completion P(Prop) [Ben96,

Tac09]. The powerset does not capture the possibility that a propagatormight be refined to a stronger
one. For instance, it seems natural that 𝑥 < 4 and 𝑥 + 𝑦 ≤ 3 can be refined to 𝑥 < 3 and 𝑥 + 𝑦 ≤ 2
respectively, because it is an extensive operation on the solutions set, e.g., J𝑥 < 3K♭ ⊆ J𝑥 < 4K♭. The
Hoare construction captures both the powerset behavior and the refinement of existing propagators
to stronger ones.

The concretization of an abstract element represents the current set of solutions of this element.
This is why the concretization is solely defined by 𝛾𝐴 (𝑎), as the propagators are part of the
refinement operator. It implies that adding new propagators in the problem, without performing
any refinement step, does not increase the precision of the abstract element, which seems to be the
correct assumption.
The split function entirely relies on the underlying abstract domain. Streamlining [GS04] is an

advanced example of split operator over PP . A streamlined constraint is problem-dependent and
carefully designed to pick a small part of the state space that is known to contain solutions. The
streamlined constraints are usually added at the top of the search tree, and the rest is explored with
a more standard solving algorithm. It is a split operator because the complement of the streamlined
constraints gives a second sub-problem to explore if the first did not lead to a solution.

We provide two basic propagation engines encapsulated in refineseq and refinepar for a sequential
and a fully parallel scheduling of the propagators. The sequential refineseq operator applies each
propagator in turn and only once. Static scheduling of propagators is a viable strategy when the
propagators are few and of similar complexity, as it sometimes occurs in continuous problems.
However, for discrete problems, it has been shown that dynamically scheduling the propagators is
a better strategy. We refer to [SS08] for an exhaustive performance analysis of numerous sequential
propagation engines on discrete domains. In our framework, sequential propagation engines can be

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

0:22 P. Talbot, A. Jung, K. Ueda, and P. Van Roy

implemented on top of PP by relying on the atomic refine𝑖 operators. However, further development
along this road is out of scope in this paper. Propagation engines as fixed point computations over
partial order have been notably developed in [Ben96, Apt99, Apt00, GM03]. In contrast, refinepar
is a fully parallel propagation engine. Interestingly, refinepar coincides with the join

⊔
Prop 𝑃 of all

propagators in the pointwise lifting of propagators Prop. It is due to the definition of the join on Prop,
defined as 𝑝1⊔𝑝2 = _𝑎.𝑝1 (𝑎)⊔𝐴𝑝2 (𝑎), where every propagator is applied to the domain individually.
However, purely parallel computation suffers from the “parallel decoupling phenomena” where
convergence may be faster when propagators are sequentially executed [GM03]. Nevertheless,
this observation is worth to be re-explored in the context of massively multicore computing as
initiated by recent work [GMN+18]. These different refinement operators can also be composed
to obtain mixed propagation engines, as shown in [GM03]. More recently, in the field of abstract
interpretation, Kim et al. [KVT20] have studied how to compute fixed points in parallel while
taking into account sequential dependencies among functions.
We now discuss the case when the propagators and refine𝐴 are monotone, that is, when 𝑥 ≤

𝑦 ⇔ 𝑓 (𝑥) ≤ 𝑓 (𝑦). Intuitively, it means that if we feed more information 𝑦 to a function, this
function maps to at least the same amount of information as if given less initial information 𝑥 .
The main additional result is that the fixed point of {𝑝1, . . . , 𝑝𝑛}, if it exists, is the smallest one,
regardless of the order of applications. This result stems from Knaster-Tarski fixed point theorem
and chaotic iterations of abstract interpretation [CC77b]. It is studied by Apt [Apt99] in the context
of propagators. We rely on monotone refinement operators in Section 5.3 to prove compositionality
results of under-approximation.

We conclude our presentation of propagators by briefly reviewing their strengths and weaknesses.
Due to the low requirements on propagators, which are mere extensive functions, many solving
algorithms from the field of operation research, such as for scheduling, vehicle routing and assign-
ment problems, have been integrated in constraint solvers as propagators. The chief advantage is
to seamlessly combine by logical conjunction the constraints implemented by these propagators.
The price to pay for the granted flexibility is that, because their internal structures are hidden, the
conjunctive combination of two propagators can only be achieved through functional composition,
even if they use the same underlying data structures. Moreover, as a propagator only models the
refinement operator of an abstract domain, it cannot be split or queried. For instance, consider
two propagators 𝑝1 and 𝑝2 implementing the constraints 𝑥 + 𝑦 ≤ 3 and 𝑦 − 𝑧 ≤ 2 respectively.
These constraints can be treated more efficiently in the octagon abstract domain than by computing
the fixed point of 𝑝1 ◦ 𝑝2. Moreover, the octagon abstract domain can split its elements efficiently
whereas, using propagators, only the underlying abstract domain is usually split, e.g., the variables
in the store. Pelleau et al. [PTB14] give various split operators for octagons on continuous domains,
and a more detailed comparison between propagators and octagons can be found in [TCMT19].

5.3 Compositionality of under-approximation
The propagation problem abstract domain combines different refinement operators. However,
what are the properties conserved when combining refinement operators? In particular, are the
under- and over-approximation properties of two refinement operators preserved upon functional
composition? We provide elements of answer here and in the next section, which are useful to
establish the properties of PP , but also for the composition of refinement operators in general.

We first look at the elements at the end of a refinement chain. We show that if we refine separately
two formulas, their results can be combined by join.

Lemma 5.7 (Preservation of under-approximation). Let 𝑎, 𝑏 ∈ 𝐴 two elements respectively
under-approximating 𝜑1 and 𝜑2. Then 𝑎 ⊔ 𝑏 under-approximates 𝜑1 ∧ 𝜑2.

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

Abstract Constraint Programming
draft v0.1 0:23

Proof. We have 𝛾 (𝑎) ⊆ J𝜑1K♭ and 𝛾 (𝑏) ⊆ J𝜑2K♭. By monotonicity of 𝛾 , 𝛾 (𝑎 ⊔ 𝑏) ⊆ 𝛾 (𝑎) ∩ 𝛾 (𝑏).
We also have J𝜑1∧𝜑2K♭ = J𝜑1K♭∩J𝜑2K♭. Thus, 𝑎⊔𝑏 is an under-approximation as we have𝛾 (𝑎⊔𝑏) ⊆
J𝜑1K♭ ∩ J𝜑2K♭. Therefore, under-approximations are preserved under the join operation. □

Lemma 5.8 (Persistence of under-approximation). Let 𝑎 ∈ 𝐴 an element under-approximating
𝜑 . Then for all 𝑏 ∈ 𝐴, 𝑎 ⊔ 𝑏 also under-approximates 𝜑 .

Proof. We have 𝛾 (𝑎) ⊆ J𝜑K♭. By monotonicity of 𝛾 , 𝛾 (𝑎 ⊔ 𝑏) ⊆ J𝜑K♭ for any 𝑏 ∈ 𝐴. □

The previous results can be lifted to refinement operators. A direct way to combine refinement
operators is to run them in parallel, and combine their results with the join operator. Let 𝑓 𝑖 (J𝜑1K)
and 𝑔 𝑗 (J𝜑2K) be under-approximations. Then by Lemma 5.7, the element 𝑓 𝑖 (J𝜑1K) ⊔ 𝑔 𝑗 (J𝜑2K) is an
under-approximation of 𝜑1 ∧ 𝜑2. It is a safe way to combine two under-approximating refinement
operators.
However, this “parallel approach” bears a number of weaknesses. Firstly, the two refinement

operators only share information at the end of their computations. This is not always efficient,
as sharing information during the computation might accelerate the convergence [GM03, SS08].
Secondly, the individual approximations contain more elements than their intersection. Especially
for under-approximations, sharing information might help to reduce the memory consumption of
the approximations. For these reasons, we often benefit from interleaving the refinement operators.
However, the properties of sequential composition are not as easily preserved as with the parallel
composition.

To illustrate the challenge, consider the two following under-approximating refinement operators
over Z♯, for the constraint 𝑥 = ∞:

𝑔(𝑎) =
{
∞ if 𝑎 is even
𝑎 + 1 otherwise ℎ(𝑎) =

{
∞ if 𝑎 is odd
𝑎 + 1 otherwise

For all 𝑎 ∈ Z♯, both functions 𝑔 and ℎ are at a fixed point after two applications at most. Moreover,
their fixed points is equal to∞ which correctly under-approximates the initial constraint. However,
the composition 𝑔 ◦ ℎ has no fixed point reachable in a finite number of steps for even numbers,
thus it is not a correct under-approximating refinement operator. The issue here is that 𝑔 and ℎ are
in some sense “not compatible” as they disrupt the computation of each other.

The missing property of𝑔 andℎ is monotonicity. Indeed, the composition of monotone refinement
operators preserves under-approximations. Intuitively, it implies that the computation of an under-
approximation cannot be disrupted by new information external to the refinement operator.

Proposition 5.9 (Preservation of under-approximating refinement). Let 𝑓 : 𝐴→ 𝐴 be an
under-approximating and monotone refinement operator over an abstract domain 𝐴. Let 𝑓 𝑖 (J𝜑K) be
an under-approximation. Then, for all 𝑎 ∈ 𝐴 and 𝑗, 𝑘 ∈ N with 𝑗 + 𝑘 = 𝑖 , 𝑓 𝑗 (𝑓 𝑘 (J𝜑K) ⊔ 𝑎) is also an
under-approximation.

Proof. We have 𝑓 𝑘 (J𝜑K)⊔𝑎 ≥ 𝑓 𝑘 (J𝜑K). Bymonotonicity of 𝑓 , we have 𝑓 𝑘 (J𝜑K)⊔𝑎 ≥ 𝑓 𝑘 (J𝜑K) ⇒
𝑓 𝑗 (𝑓 𝑘 (J𝜑K) ⊔ 𝑎) ≥ 𝑓 𝑗 (𝑓 𝑘 (J𝜑K)). We also have 𝑓 𝑗 (𝑓 𝑘 (J𝜑K)) = 𝑓 𝑖 (J𝜑K), Therefore, by Lemma 5.8,
𝑓 𝑗 (𝑓 𝑘 (J𝜑K) ⊔ 𝑎) is also an under-approximation since it is greater than 𝑓 𝑖 (J𝜑K). □

Corollary 5.10 (Composition of under-approximating refinements). Let 𝑓 : 𝐴 → 𝐴

and 𝑔 : 𝐴 → 𝐴 be two under-approximating and monotone refinement operators. Then, 𝑓 ◦ 𝑔 is
under-approximating.

This corollary shows that the refinement operators refineseq and refinepar of PP are under-
approximating if the propagators are themselves under-approximating and monotone. In fact, we
can state an even more powerful corollary.

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

0:24 P. Talbot, A. Jung, K. Ueda, and P. Van Roy

Corollary 5.11. Let 𝑓 : 𝐴→ 𝐴 be a monotone refinement operator under-approximating 𝜑 . Then,
for any extensive function 𝑔 : 𝐴→ 𝐴, 𝑓 ◦ 𝑔 under-approximates 𝜑 .

We can compose an under-approximating refinement operator with any function that freely
prunes the domains without hindering the under-approximating property. This is often useful to
accelerate the convergence. We will return to this aspect in more details in Section 6.5.

The adequacy of the monotone property has been pushed forwards by different authors, but in
slightly different settings. Extensive and monotone refinement operators have been studied in depth
by Apt [Apt99, Apt00] for studying the properties of generic propagation engines. What’s more,
with the addition of idempotence, these functions are at the heart of the concurrent constraint
programming (CCP) paradigm [SRP91]. The chief advantages of CCP are modularity and correctness
as it guarantees any program written in this paradigm to be closure operators (extensive, monotone
and idempotent functions) by syntactic construction. However, idempotence suggests that functions
are combined in parallel, the intermediate computation steps are internalized. As we mentioned
before, only combining the “end result” might lead to slower convergence. In the context of our
work, the key is that monotonicity is a sufficient condition to preserve under-approximation under
functional composition. Besides, not all refinement operators are monotone, and we discuss their
compositionality conditions later in Section 6.5. We discuss CCP in more detail in Section 8.4.

5.4 Compositionality of over-approximation
We now turn to the composition of over-approximating refinement operators. This section follows
the same organization than the previous section, and we start with the composition of over-
approximating elements at the end of a refinement chain. We obtain similar results than for
under-approximation with the additional notion of join-preserving concretization function.

Definition 5.12 (Join-preserving function). Let 𝐿 and 𝐾 be lattices. The function 𝑓 : 𝐿 → 𝐾 is
join-preserving if 𝑓 (𝑎 ⊔ 𝑏) = 𝑓 (𝑎) ⊔ 𝑓 (𝑏) for all 𝑎, 𝑏 ∈ 𝐿.

Lemma 5.13 (Preservation of over-approximation). Let 𝑎, 𝑏 ∈ 𝐴 two elements respectively
over-approximating 𝜑1 and 𝜑2. Then 𝑎⊓𝑏 over-approximates 𝜑1∧𝜑2. Moreover, if 𝛾𝐴 is join-preserving,
then 𝑎 ⊔ 𝑏 also over-approximates 𝜑1 ∧ 𝜑2.

Proof. The first part is obtained by duality of Lemma 5.7.We have𝛾 (𝑎) ⊇ J𝜑1K♭ and𝛾 (𝑏) ⊇ J𝜑2K♭.
By monotonicity of 𝛾 , we have 𝛾 (𝑎 ⊓ 𝑏) ⊇ 𝛾 (𝑎) ∪ 𝛾 (𝑏) ⊇ J𝜑1K♭ ∩ J𝜑2K♭. The second part is shown
as follows. Due to 𝛾 being join-preserving, we have 𝛾 (𝑎 ⊔ 𝑏) = 𝛾 (𝑎) ∩ 𝛾 (𝑏) ⊇ J𝜑1K♭ ∩ J𝜑2K♭. Hence,
𝛾 (𝑎 ⊔ 𝑏) over-approximates J𝜑1 ∧ 𝜑2K♭. □

Lemma 5.14 (Persistence of over-approximation). Let 𝑎 ∈ 𝐴 an element over-approximating
𝜑 . Then for all 𝑏 ∈ 𝐴, 𝑎 ⊓ 𝑏 also over-approximates 𝜑 .

Proof. Obtained by duality of Lemma 5.8. □

Similarly than for under-approximation, combining over-approximating elements give rise
to compositionality condition of over-approximating refinement operators. It is obtained from
Lemma 5.13 which shows us that 𝑓 𝑖 (J𝜑1K) ⊓ 𝑔 𝑗 (J𝜑2K) is an over-approximation, or if 𝛾 is join-
preserving, that the join of these two elements is also an over-approximation.

In comparison to under-approximation, the join of an over-approximation and an arbitrary ele-
ment does not necessarily yield an over-approximation. Indeed, the arbitrary element could prune
some solutions from the formula being over-approximated. Therefore, we only look at the composi-
tion of over-approximating refinement operators. For this purpose, we need an additional property,
which guarantees that an over-approximating refinement operator does not prune solution:

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

Abstract Constraint Programming
draft v0.1 0:25

∀𝑎 ∈ 𝐴, 𝛾 (𝑓 (𝑎)) ⊇ 𝛾 (𝑎) ∩ J𝜑K♭ (4)
That is, a refinement operator should not remove the remaining solution of 𝜑 in any element 𝑎 ∈ 𝐴.
This view generalizes the definition of over-approximation, since it also applies to elements that are
not initially over-approximation. The following lemma shows that this property is compositional.

Lemma 5.15. Let 𝑓 and 𝑔 be two refinement operators satisfying (4) and over-approximating 𝜑1 and
𝜑2 respectively. Then we have ∀𝑎 ∈ 𝐴, 𝛾 ((𝑓 ◦ 𝑔) (𝑎)) ⊇ 𝛾 (𝑎) ∩ J𝜑1 ∧ 𝜑2K♭, that is 𝑓 ◦ 𝑔 satisfies (4).

Proof. We have 𝛾 (𝑔(𝑎)) ⊇ 𝛾 (𝑎) ∩ J𝜑2K♭. Since (4) is defined for all element 𝑎 ∈ 𝐴, thus including
𝑔(𝑎), we have 𝛾 (𝑓 (𝑔(𝑎))) ⊇ 𝛾 (𝑔(𝑎)) ∩ J𝜑1K♭. It follows that 𝛾 (𝑓 (𝑔(𝑎))) ⊇ 𝛾 (𝑎) ∩ J𝜑1K♭ ∩ J𝜑2K♭. □

The compositionality property follows this lemma.

Proposition 5.16 (Composition of over-approximating refinement). Let 𝑓 : 𝐴 → 𝐴 and
𝑔 : 𝐴→ 𝐴 be two refinement operators satisfying (4) and over-approximating 𝜑1 and 𝜑2 respectively.
Then, 𝑓 ◦ 𝑔 is over-approximating.

Proof. From Lemma 5.15, we know that 𝑓 ◦𝑔 satisfies (4). Moreover, 𝑓 ◦𝑔 is over-approximating
since, supposing J.K is over-approximating, we have𝛾 ((𝑓 ◦𝑔) (J𝜑K)) ⊇ 𝛾 (J𝜑K)∩J𝜑K♭ and J𝜑K ⊇ J𝜑K♭.
Therefore, we have (𝛾 ◦ (𝑓 ◦ 𝑔) ◦ J.K) (𝜑) ⊇ J𝜑K♭. Finally, by induction on 𝑖 ∈ N, the refinement
operator (𝑓 ◦ 𝑔)𝑖 ◦ (𝑓 ◦ 𝑔) preserves over-approximation for all 𝑖 . □

It follows this proposition that refineseq is an over-approximating refinement operator if the
propagators of PP satisfy (4). For refinepar, we also need Lemma 5.13 to show that it is over-
approximating, due to the composition by join of the intermediate results.

The results presented in this section allow us to create new refinement operators from existing
ones, thus achieving modularity. Indeed, it is easier to check the properties of each refinement
operator individually rather than verify approximation properties on their composition as a whole.
Moreover, we gave sound arguments for the composition in parallel of refinement operators.
This will be useful to prove the correctness of implementation of parallel solving algorithms on
multi-core architectures.

6 SEARCH TREE
In the previous section, we introduce abstract domains to represent conjunctive collection of
information. For that, we relied on the Hoare lattice to represent set of refinement operators. We
now consider the dual case of disjunctive collection of information. That is, if one element in
the collection is true, then the approximated formula is satisfiable. Alternatively, if none of the
element are true, then the approximated formula is unsatisfiable. We introduce the search tree
abstract domain which encapsulates disjunctive collections of information using the Smyth lattice
construction.
There are at least two reasons to consider the Smyth construction. Firstly, in the case of over-

approximation, it is helpful to increase the precision of an abstract domain. Consider the concrete
element {{𝑥 ↦→ 1.25}, {𝑥 ↦→ 2.1}}. In the lattice of intervals, it can be over-approximated with
[1.25..⌈2.1⌉], which contains the superfluous elements ⌈1.25⌉, . . . , ⌊2.1⌋, ⌈2.1⌉. By considering a
collection of intervals, we obtain the more precise over-approximation {[1.25..1.25], [⌊2.1⌋ ..⌈2.1⌉]}.
A second reason to use the Smyth construction is to “complete” some refinement operators to

help them reach an under-approximation. For instance, the propagator for the constraint 𝑥 > 𝑦

given in Example 5.4 is not under-approximating. Indeed, if we compute the fixed point of this
propagator on, for instance, 𝑥 = [0..2] and 𝑦 = [0..2], it yields 𝑥 = [1..2] and 𝑦 = [0..1]. However,

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

0:26 P. Talbot, A. Jung, K. Ueda, and P. Van Roy

the concrete assignment {𝑥 ↦→ 1, 𝑦 ↦→ 1} belonging to this element does not under-approximate
𝑥 > 𝑦. Thanks to the Smyth construction, we can split this elements into several parts in order
to help the propagator to reach an under-approximation. This is possible if the propagator meets
certain conditions that are made clear in Section 6.5.
From the viewpoint of abstract interpretation, the search tree abstract domain is an adaptation

to constraint reasoning of the disjunctive completion [CC79]. Both are based on the Smyth order.
The disjunctive completion represents disjunctive properties of a program, such as occurring in
conditional statements, in order to increase the precision of the approximation. The difference
is that the search tree abstract domain refines the elements one by one, whereas the disjunctive
completion usually views the set of elements as a whole.
From the viewpoint of constraint programming, the search tree abstract domain encapsulates

the propagate-and-search algorithm (Section 3.3) into a refinement operator. In particular, we show
that the Smyth lattice is suited to the task of representing search trees. In addition, we generalize
propagate-and-search by equipping the Smyth lattice with a queuing strategy, which guides the
exploration of the search tree. We formally define the concept of queuing strategy, introduce the
search tree abstract domain, and then give under- and over-approximation theorems.

6.1 Queuing strategy
Let 𝐴 be an abstract domain and 𝐴𝑆 its Smyth construction. We call an element 𝑄 ∈ 𝐴𝑆 a queue
of nodes5. Intuitively, a queue of nodes is the frontier of the search tree that is to be explored. We
classify the nodes in a queue into the unsplittable elements and the unknown elements as follows
(𝑄 ∈ 𝐴𝑆):

unsplittable(𝑄) def= {𝑎 ∈ 𝑄 | |split𝐴 (𝑎) | = 1}
unknown(𝑄) def= {𝑎 ∈ 𝑄 | |split𝐴 (𝑎) | > 1}

As we will see later, the elements 𝑎 ∈ 𝑄 for which |split𝐴 (𝑎) | = 0 are automatically removed from
the queue by the refinement operator. We manipulate a queue through two functions pop and
push, respectively to extract the next node to process, and to add the next nodes to explore onto
the queue. It is a standard way to explore tree-shaped structures in practice. We call this pair of
functions a queuing strategy.

Definition 6.1 (Queuing strategy). A queuing strategy is a pair of functions (push, pop) defined as
follows:

push↓ : 𝐴𝑆 ×𝐴𝑆 → 𝐴𝑆 push↑ : 𝐴𝑆 ×𝐴𝑆 → 𝐴𝑆

push↓(𝑄, 𝐵)
def
= 𝑄 ⊔𝐻 𝐵 push↑(𝑄, 𝐵)

def
= 𝑄 ⊓𝑆 𝐵

pop : 𝐴𝑆 → 𝐴𝑆 ×𝐴

pop(𝑄) def=
{
(𝑄 \ {𝑎}, 𝑎) iff ∃𝑎 ∈ unknown(Q)
(𝑄,⊤𝐴) otherwise

The function push merges the set of child nodes 𝐵 into 𝑄 . We have two versions of this function in
the case where some nodes in 𝐵 are comparable to some nodes in𝑄 . Firstly, push↓ merges the nodes
with the Hoare join, which is defined as 𝑄 ⊔𝐻 𝐵

def
= Max (𝑄 ∪ 𝐵). It only keeps the most refined

nodes and discard all the others. For instance, if 𝑄 = {[0..2], [4..6]} and 𝐵 = {[2..2]}, we will have
𝑄 ⊔𝐻 𝐵

def
= {[2..2], [4..6]}. In contrast, the over-approximating push↑ function merges the two sets

of nodes with the Smyth meet, defined as 𝑄 ⊓𝑆 𝐵
def
= Min (𝑄 ∪ 𝐵). Using the previous example, we

5Despite the name, this terminology of “queue” does not refer to the queue data structure, but to any collection of nodes.

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

Abstract Constraint Programming
draft v0.1 0:27

have 𝑄 ⊓𝑆 𝐵
def
= {[0..2], [4..6]}. The information [0..1] is removed by under-approximation, but it

might still contain solutions, and therefore we must keep it with over-approximations.
The function pop does not have two versions as it simply extracts one node from the queue.

Moreover, pop is under-specified as any unknown node can be popped. Depending on the selection
of nodes, we obtain various queuing strategies such as depth-first search (DFS), breadth-first search
(BFS) or best-first search [Kor93]. Additional information might be required by the queuing strategy
in order to select a node. For DFS and BFS, the selection criterion is based on the insertion position of
the nodes in the queue. The insertion position can be attached to each node by considering (𝐴×N)𝑆 .
However, we observe that this information does not hinder the precision of the approximation, and
thus we leave such “control information” implicit in the forthcoming development of the theory.

The push function is not an extensive operation on the Smyth lattice, but in cooperation with pop
and an extensive node processing function, we can retrieve extensiveness. We capture it formally
in the next proposition.

Proposition 6.2. Let 𝐴 be an abstract domain, and 𝐴𝑆 its Smyth lattice. For all extensive functions
𝑓 : 𝐴𝑆 ×𝐴→ 𝐴𝑆 ×𝐴𝑆 , i.e., (𝑄, {𝑎}) ≤ 𝑓 (𝑄, 𝑎) with a component-wise Smyth ordering, the functions

push↓ ◦ 𝑓 ◦ pop push↑ ◦ 𝑓 ◦ pop

are extensive on 𝐴𝑆 .

Proof. The first case is pop(𝑄) = (𝑄\{𝑎}, 𝑎) when 𝑎 is an unknown node in𝑄 . We have (𝑄 ′, 𝐵) =
𝑓 (𝑄 \ {𝑎}, 𝑎) which is extensive, i.e., {𝑎} ≤𝑆 𝐵 and 𝑄 \ {𝑎} ≤𝑆 𝑄 ′. We prove that push↓(𝑄 ′, 𝐵) is
also extensive: 𝑄 ≤𝑆 push↓(𝑄 ′, 𝐵) ⇔ 𝑄 ≤𝑆 Max (𝑄 ′ ∪ 𝐵) ⇔ ∀𝑦 ∈ Max (𝑄 ′ ∪ 𝐵), ∃𝑥 ∈ 𝑄, 𝑥 ≤ 𝑦.
To show that, observe we have Max (𝑄 ′ ∪ 𝐵) ⊆ 𝑄 ′ ∪ 𝐵, hence either 𝑦 ∈ 𝑄 ′ or 𝑦 ∈ 𝐵. If 𝑦 ∈ 𝑄 ′,
then 𝑄 ≤𝑆 𝑄 ′ ≤𝑆 {𝑦}, so ∃𝑥 ∈ 𝑄, 𝑥 ≤ 𝑦. If 𝑦 ∈ 𝐵, then {𝑥} ≤𝑆 𝐵 ≤𝑆 {𝑦} ⇒ 𝑥 ≤ 𝑦. It proves
𝑄 ≤𝑆 push↓(𝑄 ′, 𝐵). The over-approximation case 𝑄 ≤𝑆 push↑(𝑄 ′, 𝐵) is proved in the same way
because we also have Min (𝑄 ′ ∪ 𝐵) ⊆ 𝑄 ′ ∪ 𝐵.
The second case is pop(𝑄) = (𝑄,⊤𝐴) when unknown(𝑄) = {}. We have (𝑄 ′, 𝐵) = 𝑓 (𝑄,⊤𝐴)

which is extensive. The set 𝐵 is either equal to {} or {⊤𝐴}. In the case of an empty set, the push
function is the identity on𝑄 ′. For {⊤𝐴}, we have push↓(𝑄 ′, {⊤𝐴}) = {⊤𝐴} or push↓({}, {⊤𝐴}) = {},
and push↑(𝑄 ′, {⊤𝐴}) = 𝑄 ′. All of which are extensive.
We conclude that both push↓ ◦ 𝑓 ◦ pop and push↑ ◦ 𝑓 ◦ pop are extensive operations. □

6.2 Search tree abstract domain
The search tree abstract domain is an adaptation to constraint reasoning of the disjunctive com-
pletion of abstract interpretation [CC79]. Both are based on the Smyth order. The disjunctive
completion represents disjunctive properties of a program, such as occurring in conditional state-
ments, in order to increase the precision of the approximation. The difference is that the search tree
abstract domain refines the elements one by one using a queuing strategy, whereas the disjunctive
completion usually views the set of elements as a whole. Now we focus on and define the search
tree abstract domain.

Definition 6.3 (Search tree). Let𝐴 be an abstract domain and (push, pop) a queuing strategy. Then
the search tree construction ST (𝐴) = ⟨𝐴𝑆 , ≤,⊔,⊓,⊥,⊤⟩ is an abstract domain with the following
operators:
• The lattice operations are inherited from the Smyth lattice (Definition 2.12),
• 𝛾 (𝑄) def= ⋃

𝑎∈𝑄 𝛾𝐴 (𝑎),
• J𝜑K def

= {J𝜑K𝐴},

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

0:28 P. Talbot, A. Jung, K. Ueda, and P. Van Roy

• J𝜑1 ∨ 𝜑2K
def
= J𝜑1K ⊓ J𝜑2K if J𝜑1 ∨ 𝜑2K𝐴 is undefined,

• split (𝑄) def= {𝑠 ∪ unsplittable(𝑄), 𝑡 ∪ unsplittable(𝑄)} where 𝑡 ¤∪ 𝑠 = unknown(𝑄),
• refine def

= push ◦ (id × (split𝐴 ◦ refine𝐴)) ◦ pop

The order relation of the Smyth construction allows us to refine nodes already in the queue, either
through refine or split, or to discard nodes, for instance if split (𝑎) = {}. The concretization of a
queue is the union of the concretization of its elements. The interpretation function encapsulates
the interpretation of the base domain in a singleton set. Initially, the queue will only contain a
single element, before being refined and split. If the base domain does not support disjunction, it
can be represented by a queue with two root nodes, one for each component of the disjunction.

The split operator divides the unexplored state space into two parts. If only unsplittable elements
remain, then this operator maps to a singleton. As we discuss later in Section 8.2, the fact that
the search tree is itself an abstract domain, and has a split operator, enables nested combinatorial
solving in structures such as ST (ST (𝐴)).
The main part of this abstract domain resides in the refinement operator. We first show that

refine is extensive, thus is indeed a refinement operator.

Lemma 6.4. refineST is an extensive function.

Proof. By Lemma 6.2, it is sufficient to prove that (id × (split𝐴 ◦ refine𝐴)) is extensive. We have
(id × (split𝐴 ◦ refine𝐴)) (𝑄, 𝑎) ≤ (𝑄, 𝑎), because 𝑄 is unchanged, and split𝐴 ◦ refine𝐴 is extensive
over 𝑎 by definition, i.e., we have {𝑥} ≤𝑆 (split𝐴 ◦ refine𝐴) (𝑥) for any 𝑥 ∈ 𝐴. □

The next lemma shows that the refinement process terminates whenever there is no unknown
node to explore anymore.

Lemma 6.5. For all 𝑄 ∈ 𝐴𝑆 , refine2ST (𝑄) = 𝑄 ⇔ unknown(𝑄) = {}.

Proof. We prove both directions of the equivalence.
(1) refineST (𝑄) = 𝑄 ⇒ unknown(𝑄) = {}. Assume unknown(𝑄) ≠ {} and 𝑄 is a fixed point of

refineST . Then ∃𝑥 ∈ 𝑄, |𝐵 = split (𝑥) | > 1, but push(𝑄, 𝐵) ≠ 𝑄 because 𝐵 >𝑆 {𝑥}, thus a fixed
point is not reached .

(2) refine2ST (𝑄) = 𝑄 ⇐ unknown(𝑄) = {}. By the definition of pop, if unknown(𝑄) = {}, we
have pop(𝑄) = (𝑄,⊤𝐴). By Lemma 6.4, 𝐵 = (split𝐴 ◦refine𝐴) (⊤𝐴) is extensive, we necessarily
have {⊤𝐴} ≤ 𝐵, thus 𝐵 = {} or 𝐵 = {⊤𝐴}. In the first case, pushing an empty set results in 𝑄 ,
hence a fixed point. The second case results in {⊤𝐴} if push↓ (see Proposition 6.2). A second
application of refineST ({⊤𝐴}) necessarily yields a fixed point.

□

In comparison to the algorithmic formulation, shown in Section 3.3 with solve, refine is generic
w.r.t. the queuing strategy and it supports infinite over-approximation sequence. With solve,
an infinite sequence prevents the termination of the algorithm. Alternatively, such as explored
in [PMTB13], the termination criterion can be embedded in the algorithm. The issue is that the
termination criterion depends on the nature of the problem solved. Usual termination criteria
include time limit, nodes limit, depth of the search tree or a precision measure on the size of the
elements, as it is often the case in continuous domain. In contrast, the refinement operator can
be called an unbounded number of times until a user-defined precision is reached. In essence, we
delegate the termination problem to the user.

As an example, we now give an abstract domain at the core of continuous constraint programming
obtained from the combination of the abstract domains previously defined.

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

Abstract Constraint Programming
draft v0.1 0:29

Example 6.6 (Continuous constraint programming). In continuous constraint programming, one
is usually interested by finding an over-approximation of the set of all solutions of a logical formula
(see, e.g., [BGGP99, CJ09, AR16]). The core structures and algorithms to solve continuous constraint
satisfaction problems are captured by the abstract domain ST (PP (I(F♯))). In Section 6.4, we study
the properties required by propagators to over-approximate the set of solutions.

6.3 Single solution abstract domain
We show in this section a simple refinement operators combination, and how we can use the results
of Section 5.3 to prove its correctness. The refinement operator of the search tree abstract domain
approximates the entire space of solutions of a formula. It can be modified to search for a single
solution, in which case we will refer to the search tree abstract domain as ST 1. Let 𝑓 : 𝐴𝑆 → 𝐴𝑆 be
a refinement operator over 𝐴𝑆 . We wish to reach a fixed point on the first unsplittable element:

refine def
= stop_on_unsplittable ◦ 𝑓

stop_on_unsplittable(𝑄) def=
{
unsplittable(𝑄) if |unsplittable(𝑄) | ≥ 1
𝑄 otherwise

As stop_on_unsplittable only removes elements from𝑄 , we conclude that it is an extensive operation.
By Proposition 5.11, it is immediate that stop_on_unsplittable◦𝑓 is under-approximating if 𝑓 is under-
approximating. Further, 𝑓 does not need to be monotone because the output of stop_on_unsplittable
is either a fixed point of 𝑓 , or the output of 𝑓 itself. Moreover, if split𝐴 satisfies (2), and the fixed
point of refine is not empty, the formula 𝜑 is guaranteed to be satisfiable. Dually, if 𝑓 is over-
approximating, and the fixed point of refine is empty, then the problem is proven unsatisfiable. Of
course, stop_on_unsplittable is not over-approximating as it removes potential solutions, therefore
the composition stop_on_unsplittable ◦ 𝑓 is not over-approximating. In the case of finite discrete
problems, the underlying abstract domain is both an under- and over-approximation. This situation
is ideal since we always know with certainty if the formula is satisfiable or not.

Example 6.7 (Discrete constraint programming). Propagate and search is a core algorithm in
many discrete constraint solvers such as GeCode [STL14] and Choco [PFL17], and constraint
logic programming systems such as Eclipse [AW07] and GNU Prolog [DAC12]. As an example,
we show the abstract domain of such a solver for the very common case where one looks for a
single solution to a constraint satisfaction problem. The underlying structures and algorithms are
concisely captured by the abstract domain ST 1 (PP (I(Z♯))). As seen in Section 4, this abstract
domain can be adapted to other domains of discourse such as sets. We present in the next two
sections the necessary properties on propagators to guarantee that the refinement operator of this
abstract domain finds a solution if one exists.

6.4 Compositionality of over-approximation
We give a series of results to design correct under- and over-approximating refinement operators
over search trees. We will also apply these results to refineST . The properties studied are generic
with regard to the queuing strategy provided push↓ is used for under-approximation and push↑ is
used for over-approximation.

For generality purposes, we consider node processing functions of the form f : 𝐴𝑆 ×𝐴→ 𝐴𝑆 ×𝐴𝑆 .
Indeed, push ◦ 𝑓 ◦pop is more general than refineST which is just an example of refinement operator.
It encapsulates both the refinement and split operators in a single function. In order to reuse
the definitions given in Sections 5.3 and 5.4, it is useful to extend the concretization function to
Cartesian product. For the input of 𝑓 we have 𝛾 ((𝑄, 𝑎)) = 𝛾ST (𝑄) ∪ 𝛾𝐴 (𝑎), and for its output, we
have 𝛾 ((𝑄, 𝐵)) = 𝛾ST (𝑄) ∪ 𝛾ST (𝐵). This allows us to state the following proposition.

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

0:30 P. Talbot, A. Jung, K. Ueda, and P. Van Roy

Proposition 6.8. Let 𝑓 be a node processing function satisfying (4). Then push↑ ◦ 𝑓 ◦ pop is an
over-approximating refinement operator.

Proof. By Lemma 6.2, we know that push↑ ◦ 𝑓 ◦ pop is extensive. Moreover, push↑ is defined as
the meet in the Smyth lattice. From Lemma 5.13, the meet operation preserves over-approximation,
thus push↑ is over-approximating. The function pop is also over-approximating as we have 𝛾 (𝑄) =
𝛾 (𝑝𝑜𝑝 (𝑄)). Therefore, by Proposition 5.16, the function composition push↑ ◦ 𝑓 ◦ pop preserves
over-approximation. □

We can rely on Proposition 5.16 to show that, given two node processing functions 𝑓 and 𝑔
satisfying (4), (push↑ ◦ 𝑓 ◦ pop) ◦ (push↑ ◦ 𝑔 ◦ pop) is an over-approximating refinement operator.
This gives us a correct way to compose over-approximating refinement operators over search
trees. Furthermore, we note that the two queuing strategies do not need to be identical, and that
each refinement operator can be called several times before the other one is called. For instance,
interleaved depth-first search [Mes97] mix breadth- and depth-first search strategies, and could be
expressed in this framework.

However, this composition technique is unusual, as we oftenwish to combine two node processing
functions acting on a same node at the same time, and not on separated nodes of the search tree.
We obtain finer results by viewing the node processing function as the functional composition
𝑝 ◦ 𝑠 ◦ 𝑟 of several components:

𝑟 : 𝐴𝑆 ×𝐴→ 𝐴𝑆 ×𝐴 (refinement)
𝑠 : 𝐴𝑆 ×𝐴→ 𝐴𝑆 ×𝐴𝑆 (split)
𝑝 : 𝐴𝑆 ×𝐴𝑆 → 𝐴𝑆 ×𝐴𝑆 (prune)

As long as these components satisfy (4), their compositions 𝑝 ◦ 𝑠 ◦ 𝑟 is over-approximating as well.
The pruning component has the purpose to cut off some branches of the search tree, thus it is
generally used in the context of under-approximation, that we discuss just next.

6.5 Compositionality of under-approximation
We now discuss the dual case of under-approximation. We saw in the introduction of this section
that the propagator of 𝑥 > 𝑦 is not an under-approximating refinement operator. Formally, the
issue is that the set of fixed points of J𝑥 > 𝑦K do not only yield under-approximations. Nevertheless,
after a sufficient number of splits, this propagator eventually generates under-approximations. In
cooperation with the search tree and a suited split operator, the under-approximating property (1a)
can be recovered. The key is that we do not need to look at all the fixed points of the propagator,
but only at its set of unsplittable fixed points. More precisely, if the unsplittable fixed points of a
node processing function 𝑓 are under-approximating, then push↓ ◦ 𝑓 ◦ pop is under-approximating.
In order to formally describe this statement, we extend the notion of unsplittable elements to node
processing function as follows:

unsplittable(𝑄) def= {𝑎 ∈ 𝑄 | | (𝜋2 ◦ 𝑓) (𝑄 \ {𝑎}, 𝑎) | ≤ 1}
unsplittable(𝑄, 𝐵) def= unsplittable(𝑄 ∪ 𝐵)

The definition of pop is adapted accordingly as well.

Proposition 6.9 (Eventually under-approximating). Let 𝑓 : 𝐴𝑆 × 𝐴 → 𝐴𝑆 × 𝐴𝑆 be a node
processing function approximating 𝜑 . For every queue 𝑄 ∈ 𝐴𝑆 , and element 𝑎 = pop(𝑄), if 𝑓 satisfies:

∀𝑢 ∈ unsplittable(𝑓 (𝑎)), 𝛾 (𝑢) ⊆ J𝜑K♭ (5)
then the fixed point of push↓ ◦ 𝑓 ◦ pop is an under-approximation of 𝜑 . Moreover, if the fixed point is
reachable in a finite number of steps, we say 𝑓 is eventually under-approximating.

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

Abstract Constraint Programming
draft v0.1 0:31

Proof. A fixed point 𝑄 of push↓ ◦ 𝑓 ◦ pop is only reached when 𝑄 = unsplittable(𝑄). If 𝑄 is
not a fixed point, we must have (𝑄 ′, 𝐵) = (𝑓 ◦ pop) (𝑄) with |𝐵 | > 1 by definition of pop. Now,
push↓(𝑄 ′, 𝐵) cannot be equal to 𝑄 because {𝑎} ⊔𝐻 𝑄 < 𝐵 ⊔𝐻 𝑄 ′ with 𝑎 = 𝜋1 (pop(𝑄)). Indeed, we
have {𝑎} <𝐻 𝐵 since |𝐵 | > 1, thus 𝐵 ≠ {𝑎}. Therefore, 𝑄 cannot be a fixed point of push↓ ◦ 𝑓 ◦ pop
if it contains unknown elements. □

In order to design an under-approximating refinement operator, we need two things. Firstly,
the fixed point of push↓ ◦ 𝑓 ◦ pop must exist and be reachable in a finite number of steps. This is
for example the case if 𝐴 satisfies ACC; we covered more conditions in Section 5.3. Secondly, as
indicated by the previous proposition, the node processing function must decide if unsplittable
elements are under-approximations. This last condition generalizes to arbitrary lattices the checking
condition of propagators in discrete CSP [Tac09]. In the simpler case of a node processing function
of the form id × (split ◦ refine), such as with refineST , Proposition 6.9 boils down to the following
condition:

split (refine(𝑎)) = {refine(𝑎)} ⇒ 𝛾 (refine(𝑎)) ⊆ J𝜑K♭

It is simpler because the queue 𝑄 is not modified by split or refine.
We now study sufficient conditions to compose eventually under-approximating node processing

function with other extensive functions. The key is that as long as we have an under-approximating
“core” node processing function, we can compose it with other extensive functions while preserving
under-approximation. However, unlike in Section 5.3, we cannot rely on monotonicity because the
split operator is not necessarily monotone.

Example 6.10 (Non-monotone split operator). Consider for example a split over the store of integer
intervals Store(I(Z♯)) which splits on the variable with the largest interval. We develop an example
which shows the non-monotonicity of this split operator.

({𝑥 ↦→ [1..5], 𝑦 ↦→ [1..6]} ≤ {𝑥 ↦→ [1..5], 𝑦 ↦→ [1..4]}
⇒ split ({𝑥 ↦→ [1..5], 𝑦 ↦→ [1..6]}) ≤𝑆 split ({𝑥 ↦→ [1..5], 𝑦 ↦→ [1..4]}))
⇔ {{𝑥 ↦→ [1..5], 𝑦 ↦→ [4..6]}, {𝑥 ↦→ [1..5], 𝑦 ↦→ [1..3]}} ≤𝑆

{{𝑥 ↦→ [1..2], 𝑦 ↦→ [1..4]}, {𝑥 ↦→ [3..5], 𝑦 ↦→ [1..4]}}
⇒ {𝑥 ↦→ [1..5], 𝑦 ↦→ [4..6]} ≤ {𝑥 ↦→ [1..2], 𝑦 ↦→ [1..4]}∨

{𝑥 ↦→ [1..5], 𝑦 ↦→ [1..3]} ≤ {𝑥 ↦→ [1..2], 𝑦 ↦→ [1..4]}
⇒ [4..6] ≤ [1..4] ∨ [1..3] ≤ [1..4]
⇒ false

Therefore this split operator is not a monotone function.

We introduce different finiteness conditions for non-monotone operators in order to preserve
under-approximation under composition. For generality purposes, we can consider the refinement
operator 𝑓 : 𝐴→ 𝐴 instead of the node processing function np : 𝐴𝑆 ×𝐴→ 𝐴𝑆 ×𝐴𝑆 . Nonetheless,
the following definitions also apply to node processing functions by considering the refinement
operator push↓ ◦ np ◦ pop.

Firstly, an under-approximation is defined as 𝑓 𝑖 (J𝜑K), that is the first element is always an abstract
element obtained from a formula. Therefore, it does not guarantee that an under-approximation
can be reached from J𝜑K ⊔ 𝑎, for any element 𝑎 ∈ 𝐴. The definition of under-approximation can be
extended to take that into account:

∀𝑎 ≥ J𝜑K, ∃𝑖 ∈ N, 𝛾 (𝑓 𝑖 (𝑎)) ⊆ J𝜑K♭ (6)

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

0:32 P. Talbot, A. Jung, K. Ueda, and P. Van Roy

Another possibility is to show that 𝛾 is injective, that is, each abstract element uniquely describes
a concrete element, and thus a single logic formula. In that case, the original definition of under-
approximation (1a) is equivalent to (6). However, this is not sufficient to recover compositionality,
for instance, 𝑔 and ℎ in the example above satisfy this condition but are not under-approximating.
The second requirement is to constrain the space on which the refinement operates to satisfy

ACC. Of course, this is the case if𝐴 satisfies ACC. Otherwise, we can check that the set of all chains
generated by 𝑓 is a subset of 𝐴 satisfying ACC:

𝑓 (𝐴) \ fp(𝑓) satisfies ACC (7)
This condition implies that a function cannot change forever a state along an execution, and must
stabilize at some points. We note that this condition is immediately satisfied for discrete constraint
solvers which work over finite domains with a finite number of variables. Using this condition, we
can retrieve compositionality of non-monotone under-approximating refinement operators.

Definition 6.11 (Compositional refinement operators). An under-approximating refinement opera-
tor is compositional if it satisfies (6) and (7). An eventual under-approximating node processing
function 𝑓 is compositional if push↓ ◦ 𝑓 ◦ pop is compositional.

Proposition 6.12 (Composition of non-monotone under-approximating refinements). Let
𝑓 : 𝐴→ 𝐴 be a compositional refinement operator under-approximating 𝜑 . Then, for any extensive
function 𝑔 : 𝐴→ 𝐴, 𝑓 ◦ 𝑔 under-approximates 𝜑 .

Proof. Condition (7) ensures us that 𝑓 eventually reaches a fixed point, and condition (6) that
the fixed point is under-approximating. Suppose 𝑓 ◦ 𝑔 generates an infinite chain 𝑥1 < 𝑥2 < . . . <

𝑥𝑘 < . . ., then necessarily we must have an element 𝑥𝑘 , 𝑘 ∈ Z, such that 𝑓 (𝑥𝑘) = 𝑥𝑘 , otherwise
condition (7) is violated. By condition (6), 𝑥𝑘 must be an under-approximation since for all 𝑖 ∈ Z,
𝑓 𝑖 (𝑥𝑘) = 𝑓 (𝑥𝑘). □

Under the same conditions, we can combine node processing function with additional prune and
refinement operators as follows.

Proposition 6.13 (Composition of eventually under-approximating refinements). Let
𝑓 : 𝐴𝑆 ×𝐴→ 𝐴𝑆 ×𝐴𝑆 be a compositional node processing function eventually under-approximating
𝜑 . Then, for any pair of extensive functions 𝑝 : 𝐴𝑆 ×𝐴𝑆 → 𝐴𝑆 ×𝐴𝑆 and 𝑟 : 𝐴𝑆 ×𝐴→ 𝐴𝑆 ×𝐴,

push↓ ◦ 𝑝 ◦ 𝑓 ◦ 𝑟 ◦ pop
under-approximates 𝜑 .

Proof. The function pop only extracts nodes when 𝑓 can split on these nodes. Due to condi-
tion (7), 𝑓 can only split nodes a finite number of times. Hence, regardless of the information added
by the functions 𝑝 and 𝑟 , each element of the queue must become unsplittable. By König lemma
the search tree is finite since each path is finite and each node has a finite number of children. The
leaves of the search tree are unsplittable, therefore it is a fixed point of push↓ ◦ 𝑓 ◦ pop, and by
condition (6), it must be under-approximating. As under-approximations are persistent (Lemma 5.8),
push↓ ◦ 𝑝 ◦ 𝑓 ◦ 𝑟 ◦ pop under-approximates the formula 𝜑 . □

7 OPTIMIZATION PROBLEM
We turn to optimization problemswhere one seeks the optimal solutions of a formula. The optimality
criterion is generally expressed as a function 𝑓 (𝑥1, . . . , 𝑥𝑛) which we seek to minimize or maximize.
In the following, we treat the optimization function as a constraint 𝑥 = 𝑓 (𝑥1, . . . , 𝑥𝑛) where 𝑥 is the
objective variable to optimize. Moreover, we focus on minimization problem as the maximization
problem can be obtained by duality on the operations involving the objective variable.

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

Abstract Constraint Programming
draft v0.1 0:33

Given a logical formula 𝜑 , and an objective variable 𝑥 to optimize, the associated minimization
problem is stated by the following formula:

best(𝜑, 𝑥) def= 𝜑 ∧ ∀𝑦, 𝜑 [𝑥 ↦→ 𝑦] ⇒ ¬(𝑥 > 𝑦) with 𝑦 ∉ FV (𝜑)

There exists an objective variable 𝑥 such that 𝜑 is satisfied and none of the other solutions—in
which every 𝑥 is renamed to 𝑦 so we can compare them—is strictly better. We remark that the
equivalence ¬(𝑥𝑖 > 𝑦𝑖) ⇔ 𝑥𝑖 ≤ 𝑦𝑖 does not always hold when the universe of discourse is a partial
order. For instance, with the universe of discourse of sets, we can try to minimize a set variable
in which case several incomparable sets might occur. The concrete solutions space Jbest(𝜑, 𝑥)K♭
of an optimization problem contains a set of incomparable assignments minimizing the objective.
Following multi-objective optimization terminology, we call this set the Pareto front.

In our framework, an under-approximation of the Pareto front is a subset of the best solutions. It
implies that we either find at least one of the best solutions or nothing at all. We are not aware
of any solving techniques using under-approximation in this sense, because it is often better to
find a non-optimal solution rather than nothing at all. Instead, the optimization methods usually
under-approximate the set of all solutions J𝜑K♭ by keeping only the best solutions obtained so far.
In contrast, an over-approximation is a superset of the best solutions. It means that we can discard
solutions of the problem that are provably not the best. We give some definitions that will be useful
to define these two forthcoming optimization algorithms.

Let𝐴 be an abstract domain, 𝑋 be a set of variable, and 𝐷 be a lattice representing the underlying
universe of discourse. We equip 𝐴 with a pair of projective functions ⌊.⌋ : 𝑋 × 𝐴 → 𝐷 and
⌈.⌉ : 𝑋 × 𝐴 → 𝐷𝜕 . Let 𝑎 ∈ 𝐴 and 𝑥 ∈ 𝑋 a variable, we write ⌊𝑥⌋𝑎 the lower bound of 𝑥 in 𝑎, and
⌈𝑥⌉𝑎 its upper bound. We already informally relied on these functions in Example 5.4. We give
several examples of these projective functions on domains introduced in the previous sections:

• Let 𝑎 ∈ Z♯, then ⌊_⌋𝑎
def
= 𝑎 and ⌈_⌉𝑎

def
= ∞.

• Let 𝑎 = [ℓ ..𝑢] ∈ I(𝐴), then ⌊_⌋𝑎
def
= ⌊_⌋ℓ and ⌈_⌉𝑎

def
= ⌈_⌉𝑢 .

• Let 𝑎 ∈ Store(𝐴), then ⌊𝑥⌋𝑎 = ⌊𝑥⌋𝑎 (𝑥) and ⌈𝑥⌉𝑎 = ⌈𝑥⌉𝑎 (𝑥) .
• Let 𝑄 ∈ ST (𝐴), then ⌊𝑥⌋𝑄 =

d
𝑎∈𝑄 ⌊𝑥⌋𝑎 and ⌈𝑥⌉𝑄 =

d
𝑎∈𝑄 ⌈𝑥⌉𝑎 .

As an example, consider𝑄 = {[0..2], [−1..1], [1..3]} ∈ ST (I(Z♯)). We have ⌊_⌋𝑄 =
d
Z♯ {0,−1, 1} =

−1 and ⌈_⌉𝑄 =
d
(Z♯)𝜕 {2, 1, 3} = 3.

We present in the next sections two refinement operators encapsulating two optimization algo-
rithms on top of the search tree abstract domain. The first one is based on an under-approximating
abstract domain, and is the optimization algorithm found in most discrete constraint solvers.
The second one over-approximates the set of best solutions, and is generally found in numerical
constraint solvers.

7.1 Under-approximating branch-and-bound
Let 𝐴 be an under-approximating abstract domain and ST (𝐴) its search tree. An inefficient opti-
mization method is to compute the fixed point of refineST , and then to keep only the best solutions.
There is a better algorithm called branch-and-bound (BAB) which tracks the best solutions found so
far, and prunes subtrees when they cannot improve at least one of the solutions. We adapt refineST
with two new functions filter_best𝑥 : 𝐴𝑆 → 𝐴𝑆 and minimize𝑥 : 𝐴𝑆 ×𝐴→ 𝐴𝑆 ×𝐴. The subscript 𝑥
in the name of these functions is the objective variable. The first function filters the non-optimal
unsplittable elements from the queue. It is defined as follows:

filter_best𝑥 (𝑄) = unknown(𝑄) ∪ {𝑎 ∈ unsplittable(𝑄) | ∀𝑏 ∈ unsplittable(𝑄), ¬(⌊𝑥⌋𝑎 > ⌊𝑥⌋𝑏)}

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

0:34 P. Talbot, A. Jung, K. Ueda, and P. Van Roy

This function is extensive as it can only remove nodes from 𝑄 . It actually computes an antichain
on the unsplittable elements, similarly to Min 𝑆 on a set 𝑆 , but projected on the objective variables
only. The second function constrains each new explored node to lead to a better solution, if any.

minimize𝑥 (𝑄, 𝑎) = (𝑄, 𝑎 ⊔𝐴 J
∧
𝑏∈𝐵
¬(𝑥 > ⌊𝑥⌋𝑏)K𝐴) with 𝐵 = unsplittable(𝑄)

The objective variable of the abstract element 𝑎 must not be worst than any of the known solutions.
In the case that the universe of discourse is totally ordered, the minimization constraint boils down
to J𝑥 ≤ ⌊𝑥⌋𝐵K𝐴, or J𝑥 < ⌊𝑥⌋𝐵K𝐴 to find a strictly better solution.
We assemble these two functions together by modifying the refinement operator of the search

tree as follows:

ua_minimize𝑥
def
= push ◦ (id × (split𝐴 ◦ refine𝐴)) ◦minimize𝑥 ◦ pop ◦ filter_best𝑥

We notice that the new functions are added in a modular way, as existing functions composing
refineST are left unchanged. We summarize the properties of the refinement operator ua_minimize𝑥 ,
in a slightly more general form, w.r.t. the concrete domain in the next two propositions.

Proposition 7.1. Let 𝑓 be a compositional refinement operator eventually under-approximating 𝜑 ,
then

push ◦ 𝑓 ◦minimize𝑥 ◦ pop ◦ filter_best𝑥
under-approximates 𝜑 .

Proof. By Proposition 6.13, 𝑟 def
= push◦ 𝑓 ◦minimize𝑥 ◦pop is under-approximating asminimize𝑥

is extensive. Moreover, by Proposition 6.12, 𝑟 ◦ filter_best𝑥 is under-approximating as filter_best𝑥
is extensive. □

Proposition 7.2. Let 𝑓 be a compositional refinement operator over-approximating and eventually
under-approximating 𝜑 , then

push↑ ◦ 𝑓 ◦minimize𝑥 ◦ pop ◦ filter_best𝑥
exactly represents best(𝜑, 𝑥).

Proof. We must show that 𝑟 def
= push↑ ◦ 𝑓 ◦ minimize𝑥 ◦ pop ◦ filter_best𝑥 under- and over-

approximates best(𝜑, 𝑥). Let 𝑄 be 𝑟 𝑖 (Jbest(𝜑, 𝑥)K) for any 𝑖 ∈ N.
Over-approximation case: filter_best𝑥 only removes an element 𝑎 ∈ 𝑄 if there is another element

𝑏 ∈ 𝑄 such that ⌊𝑥⌋𝑎 > ⌊𝑥⌋𝑏 . If this is the case, then 𝛾 (𝑎) ∩ Jbest(𝜑, 𝑥)K♭ = {}, as the best
assignment in 𝛾 (𝑎) has a value of 𝑥 strictly greater than another assignment in 𝛾 (𝑏). Therefore,
filter_best𝑥 over-approximates best(𝜑, 𝑥). The function minimize𝑥 follows the same reasoning. As
the composition of over-approximation preserves over-approximation (by Proposition 5.16), and
that push↑ ◦ 𝑓 ◦ pop is over-approximating by definition, 𝑟 is over-approximating.
Under-approximation case: By Proposition 7.1, 𝑟 under-approximates 𝜑 . We note that using the

over-approximating push↑ is necessary to avoid losing solutions, but it does not change the fact 𝑟 is
under-approximating. Suppose 𝑄 is a fixed point of 𝑟 . If 𝑟 does not under-approximate best(𝜑, 𝑥),
then there is an element 𝑎 ∈ 𝑄 which is a non-optimal solution, i.e., ⌊𝑥⌋𝑎 > ⌊𝑥⌋𝑏 for an element
𝑏 ∈ 𝑄 . In this case, filter_best𝑥 removes 𝑎 from 𝑄 , thus 𝑄 was not a fixed point of 𝑟 .

Therefore, the function 𝑟 is both an over- and under-approximation, thus exactly represent
best(𝜑, 𝑥). □

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

Abstract Constraint Programming
draft v0.1 0:35

7.2 Over-approximating branch-and-bound
We generalize to abstract domains a standard branch-and-bound algorithm from the field of global
optimization, as described in the survey of Araya and Reyes [AR16]. This algorithm corresponds to
the computation of an over-approximation of Jbest(𝜑, 𝑥)K♭. The structure of the algorithm is similar
to the under-approximating BAB. In the context of a minimization problem, the main addition is to
keep track of an interval [𝑙𝑏..𝑢𝑏] such that the optimal values in Jbest(𝜑, 𝑥)K♭ are included in this
interval. A first over-approximation of this interval, for an objective variable 𝑥 and a queue 𝑄 , is
[⌊𝑥⌋𝑄 ..⌈𝑥⌉𝑄].
One of the crucial components of an over-approximating BAB is the upper-bounding procedure.

It consists in finding a feasible point inside an abstract element, and to use this point to prune
the upper bound. In other words, the upper-bounding function extracts an under-approximation
from an abstract element. As surveyed in [AR16], there exists many upper bounding procedures. A
simple upper-bounding consists in extracting the middle point of an element, and checking for its
satisfiability. We take a general approach by equipping an abstract domain 𝐴 with an extensive
function extract : 𝐴→ 𝐴. For all 𝑎 ∈ 𝐴, 𝑎 ≥ J𝜑K, we require extract (𝑎) to under-approximate the
initial formula 𝜑 , i.e., (𝛾 ◦extract) (𝑎) ⊆ J𝜑K♭. This function guarantees that if split (extract (𝑎)) ≠ {},
the projection of the objective variable in extract (𝑎) is a certified upper bound of the problem.
We note that any under-approximating refinement operator is an extraction operator as well:
extract def

= refine𝑖 . When an under-approximation cannot be efficiently found, this function can
safely return ⊤.
Due to partial domains of discourse, we consider a set of incomparable upper bounds. The

underlying lattice is given by the Hoare lattice (𝐷𝜕)𝐻 . Indeed, we can either refine an existing
upper bound, or find a new one. Therefore, the branch-and-bound refinement operator works over
the lattice OT = ST (𝐴) × (𝐷𝜕)𝐻 .

Nowwe create two new functions to obtain our over-approximating BAB. The first one constrains
every popped node to not be worst than any of the current upper bounds:

minimize𝑥 ((𝑄,UBs), 𝑎) = ((𝑄,UBs), 𝑎 ⊔𝐴 J
∧
𝑢∈UBs

¬(𝑥 >𝐷 𝑢)K𝐴)

Whenever a popped node has a lower bound that is greater than a known upper bound, we can
safely discard this node because it will not improve any upper bound. The second function is
the upper-bounding procedure upper_bounding𝑥 (𝑄,UBs, 𝑎), which given a queue 𝑄 and a set of
upper-bounds UBs, extracts an upper bound 𝑢 of 𝑎 and discards all the elements in 𝑄 with a lower
bound greater than 𝑢, following the same principle than in minimize𝑥 .

upper_bounding𝑥 ((𝑄,UBs), 𝑎) ={
(({𝑐 ∈ 𝑄 | ¬(⌊𝑥⌋𝑐 >𝐷 ⌊𝑥⌋𝑏)},UBs ⊔ {⌊𝑥⌋𝑏}), 𝑎) iff {𝑏} = extract (𝑎) ∧ ∀𝑢 ∈ UBs, ¬(⌊𝑥⌋𝑏 >𝐷 𝑢)
((𝑄,UBs), 𝑎) otherwise

When an under-approximation can be found, that is {𝑏} = extract (𝑎), we check that the objective
value of 𝑥 in 𝑏 is not worst than a known upper bound. If these two conditions are fulfilled, we
update the set of upper bounds UBs with the new bound ⌊𝑥⌋𝑏 . We also remove from𝑄 all the nodes
with a lower bound greater than this new upper bound. Now we can assemble these two functions
into an over-approximating BAB refinement operator:

oa_minimize𝑥
def
= push↑ ◦ (id × split𝐴) ◦ upper_bounding𝑥 ◦ (id × refine𝐴) ◦minimize𝑥 ◦ pop

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

0:36 P. Talbot, A. Jung, K. Ueda, and P. Van Roy

Similarly to the under-approximating BAB,we can prove that oa_minimize𝑥 is an over-approximating
refinement operator.

Proposition 7.3. Let 𝐴 be an over-approximating abstract domain. Then the refinement operator
oa_minimize𝑥 over-approximates best(𝜑, 𝑥).
Proof. By Proposition 5.16, it is sufficient to show that minimize𝑥 and upper_bounding𝑥 are

over-approximating. In order to show that, it is useful to show that for each 𝑢 ∈ UBs, there is no
solution 𝑠 ∈ Jbest(𝜑, 𝑥)K♭, such that 𝑠 (𝑥) > 𝑢. If that was the case, then 𝑠 would be less optimal
than the solution we found with upper bound 𝑢, which is not possible. Therefore, minimize𝑥
preserves over-approximation by interpreting ¬(𝑥 > 𝑢) for every 𝑢 ∈ UBs in an element 𝑎. The
same reasoning applies to upper_bounding𝑥 . It also preserves over-approximation by removing
all elements which cannot have a better optimal value 𝑥 than an existing solution. Therefore,
since both functions and 𝐴 are over-approximating, we conclude that oa_minimize𝑥 preserves
over-approximation. □

This algorithm does not seem to be adapted to work with exact abstract domain. The reason is
that, for exact solving such as in discrete constraint satisfaction or optimization problems, finding an
under-approximation is computationally expensive. Therefore, computing an under-approximation
with the function extract might be as hard as solving the initial problem.

We have generalized to partial order and proved correct two refinement operators which imple-
ment two standard branch-and-bound algorithms. In particular, the over-approximating BAB show-
cases a synergy between under-approximation, with the function extract, and over-approximation.
The manipulation of both kind of approximations in a single algorithm is crucial in many fields, such
as in integer linear programming where it is routine to relax a discrete problem to its continuous
version, thus to compute an over-approximation in order to find quicker an under-approximation
(or an exact solution).

8 DISCUSSION AND RELATEDWORK
We now informally discuss other abstract domains capturing other solving techniques and problems.

8.1 Existing abstract constraint solvers
Constraint programming solver. This paper finds its roots in earlier work by Benhamou [Ben96]

and more specifically Pelleau et al. [PMTB13]. The framework in [PMTB13] only considers over-
approximating refinement operators, thus it is mostly useful for continuous constraint programming.
A lattice-based constraint programming solver is proposed by Fernández and Hill [FH04] for the
domain of indexicals over intervals. Indexicals are a constraint language to construct propagators
which automatically fulfil certain properties [VHSD91, VHSD98]. The framework of Apt [Apt99,
Apt00] describes propagators over ordered structures. We discussed it in Section 5.2. Our work
can be viewed as extending these previous approaches with the formalization of non-monotone
refinement functions, and the search tree and optimization problem abstract domains. In particular,
search strategies can now be thought as functions, similar to propagators, but over the search tree.

SAT solver. Abstract conflict driven learning (ACDL) [DHK13] is a generalization of the conflict
driven clause learning (CDCL) algorithm in SAT solver [SS96] to lattice domains. ACDL and our
work share the same foundation, and are both based on abstract interpretation. Both work should
be seen as complementary.

On the first hand, ACDL formalizes conflicts learning which is not tackled in the present paper.
Conflict learning is treated as an under-approximation operator over 𝐷♭ \ J𝜑K♭, that is the set
of counter-examples of a formula 𝜑 . Therefore, a conflict is an abstract element which does not

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

Abstract Constraint Programming
draft v0.1 0:37

admit any solution in 𝜑 . Hence, there is a duality between over-approximation used for deduction
and under-approximation used for learning. In the present paper, we considered both under- and
over-approximation for deduction, and we did not formalize conflict learning. An alternative view
of conflict learning in our framework is to view it as a refinement operator over the search tree. As
a conflict is a new fact, we can add it conjunctively in any abstract element. Moreover, as a conflict
is a general fact, we can add it conjunctively in all abstract elements of a queue.
On the other hand, we developed a theoretical framework which attempts to reduce the gap

between theory and practice. We can give three differences with ACDL where our formalism is
more practical. Firstly, we do not rely on the concretization function to describe our algorithms,
whereas ACDL relies on 𝛾-completeness as a stop criterion. Secondly, their formalization depends
on the down-set and up-set completions which we argued in Section 2.2 were not practical. Thirdly,
the refinement operator, called transformer in their work, is necessarily monotone, which we have
shown was not a necessary requirement for all purposes. Once again, this is in order to reduce the
gap between theory and solver implementation [ST09]. There are more differences that go in this
direction such as their split operator, called an extrapolation operator, which only allows binary
branching.
In addition, we discuss two aspects relevant to the lattice-theoretic presentation of ACDL and

ours, which might be confusing when reading both works. In abstract interpretation, the more
we interpret a program, the more possible values a variable can take. This is dual to constraint
reasoning where the more we progress, the less possible values a variable can take. In ACDL, they
chose to keep the same order direction than in abstract interpretation, thus the transformers are
reductive functions—they go from ⊤ to ⊥ in the lattice. In contrast, we chose to keep the intuition
conveyed by domain theory [Sco82] in which ⊥ represents the lack of information (the initial
state), and as the computation progresses we go upwards in the lattice. By the duality principle
of lattices, this does not change any theorems or results, hence it is only a matter of presentation.
A second aspect is that ACDL transformers over-approximate the greatest fixed point of some
concrete functions. Instead, we chose to explain approximations w.r.t. a concrete element instead
of the function computing this concrete element, which would be defined as 𝑓𝜑

def
= _𝑐.𝑐 ⊔♭ J𝜑K♭

in our framework. We believe it removes a small formal indirection which helps in making the
definitions more understandable. In terms of fixed point, the refinement operators presented under-
or over-approximate the least fixed point of 𝑓𝜑 (it is the greatest fixed point in ACDL due to the
order reversal).

Linear programming solver. Abstract interpretation has relied on linear programming techniques
since its inception with the polyhedron abstract domain [CH78]. However, there are at least two
key differences with linear programming solvers. Firstly, an abstract domain implements additional
operators such as the join or meet, which are not commonly studied in linear programming. For
this reason, a polyhedron usually relies on a double description method: a constraint representation
from linear programming, and a generator representation to implement efficiently the join and
order relation. Secondly, linear inequalities over integers are generally relaxed to rational numbers
in abstract analyser for efficiency reason [JM09]. For these two reasons, a polyhedron is quite
different from an abstract linear programming solver. We give in the next section several hints on
using our abstract framework to design an abstract integer linear programming solver.

8.2 Prospective abstract constraint solvers
Mixed integer programming. Mixed integer programming is an optimization program containing

linear inequalities with both continuous and discrete variables. We write ®𝐷 the set of discrete
variables. A standard algorithm for this problem consists in two steps: relaxation and splitting.

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

0:38 P. Talbot, A. Jung, K. Ueda, and P. Van Roy

First, we relax the entire problem to continuous variables, and compute a solution 𝑆 of the problem.
As the set of integer solutions under-approximates the set of continuous solutions, whenever the
variables ®𝐷 in 𝑆 are integer, then 𝑆 is also a solution of the initial problem. Otherwise, suppose a
variable 𝑥 ∈ ®𝐷 equals to 2.5 in 𝑆 , then we create two subproblems with the constraints 𝑥 ≤ 2 and
𝑥 ≥ 3 to force the integrality constraints. The problem is then solved recursively. The search tree
abstract domain can be used as a basis for this method. Moreover, thanks to our generalization, the
under-approximating BAB algorithm is readily available to find the optimal solution. There are
numerous other methods such as cutting planes and column generation, that can be studied from
the perspective of abstract domains. The main goal is to investigate if these solving methods are
generalizable to abstract domains.

Multi-objective optimization. We often need to optimize several variables at once, for instance
to minimize the cost and the total time of a manufacturing process. The set of best solutions in
multi-objective optimization forms a partial order, in contrast to a total order in single objective
optimization. Therefore, the best solution is not necessarily unique. For instance, consider {cost ↦→
1, time ↦→ 2} and {cost ↦→ 2, time ↦→ 1}, there is no solution that dominates the other. One of
the main algorithms to solve multi-objective optimization problems is branch-and-bound, and it
is usually studied over linear programs [PG17]. This multi-objective variant of BAB already fits
in the abstract domain we presented in Section 7. The key is that we relied on partially ordered
universe of discourse which also include bound sets instead of single bounds. Lifting multi-objective
optimization techniques, in particular finding better bounds set, to a lattice-theoretic framework
might be valuable to various abstract domains.

Multilevel programming. Multilevel programming is a class of problems where a constraint of the
problem is itself a satisfaction or optimization problem. It was first described for two layers, namely
bilevel programming, in [BM73]. Recently, multilevel problems were studied in the context of
constraint programming [CS14], where a sub-problem is captured as a propagator. These problems
can be modelled by nesting Smyth lattices for each layer of the problem: the refinement operator of a
layer can call the refinement operator of the layers below to obtain the solutions of the sub-problems.
This class of problems also echoes with the concept of deep guards and encapsulated search in
constraint logic programming and Oz [SSW94]. Further investigation is required to connect the
semantics of these language features to Smyth lattices.

Local search. Local search is a class of incomplete optimization algorithms as they cannot prove
optimality or unsatisfiability. Nevertheless, local search is useful for solving large problems where
complete methods are not efficient. In a nutshell, a local search algorithmmoves from one solution to
another, by modifying the value of one or more variables, in order to improve an objective function.
In this sense, they can be seen as functions under-approximating the space of a formula. Although
the state space explored might be viewed as a lattice, it is difficult to view local search algorithms
as extensive functions. One of the reasons is that local search allows us to move to a solution worst
than the current one, in order to escape local minima. Moreover, they might reexplore previously
encountered states which contradicts the extensive property. For these reasons, it seems challenging
to come up with an ordering structure capturing the essence of local search. Nevertheless, some
variants of local search such as large neighbourhood search [Sha98] relies on complete methods
to solve smaller parts of the problem. Alternatively, we could view a local search algorithm as a
black box function for computing under-approximations useful to accelerate the convergence of a
complete algorithm, with a role similar to the upper-bounding procedure of BAB.

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

Abstract Constraint Programming
draft v0.1 0:39

8.3 Combination of abstract constraint solvers
Cooperation among constraint solvers can also be captured as abstract domains. The Cartesian
product allows us to compose different abstract domains, but it does not allow to exchange infor-
mation among domains. The reduced product is a Cartesian product equipped with a reduction
operator allowing the exchange of information [CC79]. It was recently shown that theories in SMT
solvers could be combined using the framework of abstract interpretation with such a reduced
product [CCM13]. In the context of our framework, we described how to create various cooperation
schemes elsewhere [TMT20].

8.4 Concurrent constraint programming
Concurrent constraint programming (CCP) is a paradigm in which concurrent processes communi-
cate through a shared global store of constraints [SR89, Sar93]. The particularity of this paradigm
is to compute with partial information expressed as constraints. The write and read primitives are
then replaced by the tell and ask primitives over a constraint store. We have tell(𝑐) for adding
a constraint 𝑐 into the store and ask(𝑐) for asking if 𝑐 can be deduced from the store. Concurrency
is treated by requiring the store to growmonotonically, i.e., removal of information is not permitted.
For example, if the store initially contains 𝑥 > 5, adding 𝑥 > 2 will not change the store and 𝑥 < 2
will fail the whole computation due to contradictory information.

This computational model is deceptively simple. Indeed, CCP and its nondeterministic extension
subsume a wide array of paradigms including logic programming, concurrent logic programming,
constraint logic programming, and dataflow languages. This generality stems from the “global
store of constraints” which is an element of a constraint system. CCP is generic in a constraint
system, and therefore the paradigm mentionned above can be embedded in CCP by using the
right constraint system, e.g., Herbrand constraint system for (concurrent) logic programming, or
Kahn constraint system for dataflow programming [SRP91]. One interesting trait of CCP is that
the theorems established on CCP programs are valid for every constraint system.
We can view a constraint system as a lattice, and the processes as closure operators (extensive,

monotone and idempotent functions) over this lattice. Any CCP programs is guaranteed by syntactic
construction to be a closure operator. This implies that the closure property is preserved under
composition of CCP programs “for free”. In the context of this paper, it is tempting to investigate CCP
to write correct by construction under- and over-approximating refinement operators. However,
although CCP is a powerful paradigm from the mathematical perspective, it suffers from two
practical shortcomings that can be addressed in conjunction with our framework.
Firstly, from our study of refinement operators, we understand that monotonicity is important

to compose under-approximating refinement operators, see, e.g., Proposition 5.11. Idempotence is
important to guarantee the existence of a fixed point because the image of an idempotent function
is also its set of fixed points. However, idempotence and monotonicity are not always practical. For
idempotence, recall that the parallel composition of the fixed point of refinement operators is often
not as efficient as their functional composition (Section 5.3). Therefore, it is important to observe
and combine internal steps towards the fixed point. In addition, not all refinement operators are
monotone as shown in [ST09] or by the refinement operators over the search tree.
Secondly, the semantics of CCP is formalized for an ideal mathematical representation of the

constraint system (the concrete domain) over which it is not always realistic to compute. For
instance, let 𝑠♭ be the current concrete store, the operator ask(𝜑) is defined as 𝑠♭ ⊆ J𝜑K♭. That is,
we can deduce 𝜑 from the store if the current solutions of the store are included in the solutions of
𝜑 . In other words, adding 𝜑 to the store does not further constrain the solutions. Computing the set
of solutions of a formula 𝜑 might be impossible or too expensive. Actually, in an implementation of

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

0:40 P. Talbot, A. Jung, K. Ueda, and P. Van Roy

CCP over finite domains, namely cc(fd), they used a relaxed version of the ask operator [VHSD98].
Formally, this can be expressed generically in our framework by viewing the store as an abstract
domain, and the ask operator as an under- or over-approximating operator.

The compositional conditions we established along this work might be a basis to extend CCP to
abstract domains. We took a step in this direction by designing spacetime programming [Tal19], an
extension of CCP to lattices, which relaxes idempotence and monotonicity properties of processes.
However, the spacetime paradigm does not take into account under- and over-approximation
properties, thus much remains to be done in this area.

9 CONCLUSION
We have lifted the components of a discrete and continuous constraint programming solvers to
a very general lattice-theoretic framework. In this framework, the data structure of a constraint
solver is viewed as a lattice, and the solving algorithm as an extensive function over this lattice.
Lattices with extensive functions are packaged together in abstract domains, a concept widely
studied in the field of abstract interpretation.

Based on this framework, we have built various constraint solvers in an incremental way. Each
component of the solver is isolated in a suited abstract domain, and more expressive abstract
domains are derived from more basic ones. This hierarchy of abstract domains captures the domain
of variables, propagators, search trees and branch-and-bound optimization algorithms. For the first
time, we obtain a framework in which the constraint model and the control aspects are unified.
Our long term project is to design a new programming language in which data structures are

lattices and programs are under- or over-approximating refinement operators. We have studied
compositional properties of refinement operators which will help us to carry on this task.

REFERENCES
[Apt99] Krzysztof R. Apt. The essence of constraint propagation. Theoretical computer science, 221(1-2):179–210, 1999.
[Apt00] Krzysztof R. Apt. The role of commutativity in constraint propagation algorithms. ACM Transactions on

Programming Languages and Systems (TOPLAS), 22(6):1002–1036, November 2000.
[Apt03] Krzysztof Apt. Principles of constraint programming. Cambridge University Press, 2003.
[AR16] Ignacio Araya and Victor Reyes. Interval Branch-and-Bound algorithms for optimization and constraint

satisfaction: a survey and prospects. Journal of Global Optimization, 65(4):837–866, August 2016.
[AW07] Krzysztof R. Apt and M Wallace. Constraint logic programming using ECLiPSe. Cambridge University Press,

2007.
[Aze07] Francisco Azevedo. Cardinal: A Finite Sets Constraint Solver. Constraints, 12(1):93–129, March 2007.
[Ben96] Frédéric Benhamou. Heterogeneous constraint solving. In International Conference on Algebraic and Logic

Programming, pages 62–76. Springer, 1996.
[BGGP99] Frédéric Benhamou, Frédéric Goualard, Laurent Granvilliers, and Jean-Francois Puget. Revising hull and box

consistency. In Logic Programming: Proceedings of the 1999 International Conference on Logic Programming,
pages 230–244. MIT press, 1999. https://doi.org/10.7551/mitpress/4304.003.0024.

[BHvMW09] Armin Biere, Marijn J. H. Heule, Hans van Maaren, and Toby Walsh, editors. Handbook of Satisfiability,
volume 185 of Frontiers in Artificial Intelligence and Applications. IOS Press, February 2009.

[Bir67] Garrett Birkhoff. Lattice Theory, volume XXV of AMS Colloquium Publications. American Mathematical
Society, 3rd edition, 1967.

[BLP02] Fabrice Bouquet, Bruno Legeard, and Fabien Peureux. Clps-b—a constraint solver for b. In Joost-Pieter Katoen
and Perdita Stevens, editors, Tools and Algorithms for the Construction and Analysis of Systems, pages 188–204,
Berlin, Heidelberg, 2002. Springer Berlin Heidelberg.

[BM73] Jerome Bracken and James T. McGill. Mathematical Programs with Optimization Problems in the Constraints.
Operations Research, 21(1):37–44, 1973. Publisher: INFORMS.

[BTM11] Anicet Bart, Charlotte Truchet, and Eric Monfroy. Verifying a real-time language with constraints. pages
844–851. IEEE, 2015-11.

[CC77a] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

https://doi.org/10.7551/mitpress/4304.003.0024

Abstract Constraint Programming
draft v0.1 0:41

symposium on Principles of programming languages, pages 238–252. ACM, 1977.
[CC77b] Patrick Cousot and Radhia Cousot. Automatic synthesis of optimal invariant assertions: Mathematical

foundations. In Proceedings of the 1977 Symposium on Artificial Intelligence and Programming Languages, page
1–12, New York, NY, USA, 1977. Association for Computing Machinery.

[CC79] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In Conference Record of the
Sixth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 269–282, San
Antonio, Texas, 1979. ACM Press, New York, NY.

[CCM13] Patrick Cousot, Radhia Cousot, and Laurent Mauborgne. Theories, solvers and static analysis by abstract
interpretation. J. ACM, 59(6), January 2013.

[CH78] Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear restraints among variables of a program.
In Proceedings of the 5th ACM SIGACT-SIGPLAN symposium on Principles of programming languages (POPL
’78), pages 84–96, Tucson, Arizona, 1978. ACM Press.

[CJ09] Gilles Chabert and Luc Jaulin. Contractor programming. Artificial Intelligence, 173:1079–1100, 2009.
[CL01] Jason Crampton and George Loizou. The completion of a poset in a lattice of antichains. International

Mathematical Journal, 1(3):223–238, 2001.
[Cou20] Patrick Cousot. The Symbolic Term Abstract Domain. In The 14th International Symposium on Theoretical

Aspects of Software Engineering, page 8, 2020.
[CS14] Geoffrey Chu and Peter J. Stuckey. Nested constraint programs. In International Conference on Principles and

Practice of Constraint Programming, pages 240–255. Springer, 2014.
[DAC12] Daniel Diaz, Salvador Abreu, and Philippe Codognet. On the implementation of GNU prolog. Theory and

Practice of Logic Programming, 12(1):253–282, 2012.
[DDD05] Gregoire Dooms, Yves Deville, and Pierre Dupont. Cp(graph): Introducing a graph computation domain in

constraint programming. In Peter van Beek, editor, Principles and Practice of Constraint Programming - CP
2005, pages 211–225, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[Dec03] Rina Dechter. Constraint Processing. TheMorgan Kaufmann Series in Artificial Intelligence. Morgan Kaufmann,
1st edition, 2003.

[DHK13] Vijay D’Silva, Leopold Haller, and Daniel Kroening. Abstract Conflict Driven Learning. In Proceedings of the
40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’13, pages
143–154, New York, NY, USA, 2013. ACM.

[DHK14] Vijay D’Silva, Leopold Haller, and Daniel Kroening. Abstract satisfaction. In Proceedings of the 41st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages - POPL ’14, pages 139–150, San Diego,
California, USA, 2014. ACM Press.

[DMP91] Rina Dechter, Itay Meiri, and Judea Pearl. Temporal constraint networks. Artificial intelligence, 49(1-3):61–95,
1991.

[DP02] B. A. Davey and H. A. Priestley. Introduction to lattices and order. Cambridge University Press, 2002.
[DPPR00] Agostino Dovier, Carla Piazza, Enrico Pontelli, and Gianfranco Rossi. Sets and constraint logic programming.

ACM Transactions on Programming Languages and Systems, 22(5):861–931, September 2000.
[FH04] Antonio J. Fernández and Patricia M. Hill. An interval constraint system for lattice domains. ACM Trans.

Program. Lang. Syst., 26(1):1–46, January 2004.
[FPÅ04] Pierre Flener, Justin Pearson, and Magnus Ågren. Introducing ESRA, a relational language for modelling

combinatorial problems. In Maurice Bruynooghe, editor, Logic Based Program Synthesis and Transformation:
13th International Symposium, LOPSTR 2003, Uppsala, Sweden, August 25-27, 2003, Revised Selected Papers,
pages 214–232, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

[Ger94] Carmen Gervet. Conjunto: Constraint Logic Programming with Finite Set Domains. page 22, 1994.
[GJM06] Ian P. Gent, Christopher Jefferson, and Ian Miguel. Minion: A fast scalable constraint solver. In ECAI, volume

141, pages 98–102, 2006.
[GM03] Laurent Granvilliers and Eric Monfroy. Implementing Constraint Propagation by Composition of Reductions.

In Catuscia Palamidessi, editor, Logic Programming, pages 300–314, Berlin, Heidelberg, 2003. Springer Berlin
Heidelberg.

[GMN+18] Ian P. Gent, Ian Miguel, Peter Nightingale, Ciaran McCreesh, Patrick Prosser, Neil CA Moore, and Chris
Unsworth. A review of literature on parallel constraint solving. Theory and Practice of Logic Programming,
18(5-6):725–758, 2018.

[GMS20] ArnaudGotlieb, DusicaMarijan, andHelge Spieker. ITE: A Lightweight Implementation of Stratified Reasoning
for Constructive Logical Operators. International Journal on Artificial Intelligence Tools, 29(03n04):2060006,
June 2020.

[GNS+16] Graeme Gange, Jorge A. Navas, Peter Schachte, Harald Søndergaard, and Peter J. Stuckey. An Abstract
Domain of Uninterpreted Functions. In Barbara Jobstmann and K. Rustan M. Leino, editors, Verification,

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

0:42 P. Talbot, A. Jung, K. Ueda, and P. Van Roy

Model Checking, and Abstract Interpretation, volume 9583, pages 85–103. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2016. Series Title: Lecture Notes in Computer Science.

[Gra78] George A. Gratzer. General lattice theory. Number 75 in Pure and applied mathematics : a series of monographs
and textbooks. Academic Press, New York, 1978.

[GS04] Carla Gomes and Meinolf Sellmann. Streamlined Constraint Reasoning. In David Hutchison, Takeo
Kanade, Josef Kittler, Jon M. Kleinberg, Friedemann Mattern, John C. Mitchell, Moni Naor, Oscar Nier-
strasz, C. Pandu Rangan, Bernhard Steffen, Madhu Sudan, Demetri Terzopoulos, Dough Tygar, Moshe Y. Vardi,
Gerhard Weikum, and Mark Wallace, editors, Principles and Practice of Constraint Programming – CP 2004,
volume 3258, pages 274–289. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004. Series Title: Lecture Notes
in Computer Science.

[Hni03] Brahim Hnich. Function Variables for Constraint Programming. page 158, 2003.
[HS97] Warwick Harvey and Peter James Stuckey. A unit two variable per inequality integer constraint solver for

constraint logic programming. In ACSC’97, volume 19, pages 102–111, 1997.
[IEE19] Ieee standard for floating-point arithmetic. IEEE Std 754-2019 (Revision of IEEE 754-2008), pages 1–84, July

2019.
[JM09] Bertrand Jeannet and Antoine Miné. Apron: A library of numerical abstract domains for static analysis. In

International Conference on Computer Aided Verification, pages 661–667. Springer, 2009.
[JMSY94] Joxan Jaffar, Michael J Maher, Peter J Stuckey, and Roland HC Yap. Beyond finite domains. In Principles and

Practice of Constraint Programming, pages 86–94. Springer, 1994.
[Kea87] R. Baker Kearfott. Some tests of generalized bisection. ACM Transactions on Mathematical Software (TOMS),

13(3):197–220, 1987.
[Kor93] Richard E. Korf. Linear-space best-first search. Artificial Intelligence, 62(1):41 – 78, 1993.
[Kow79] Robert Kowalski. Algorithm = logic + control. Communications of the ACM, 22(7):424–436, 1979.
[KVT20] Sung Kook Kim, Arnaud J. Venet, and Aditya V. Thakur. Deterministic parallel fixpoint computation. Proceed-

ings of the ACM on Programming Languages, 4(POPL):1–33, January 2020.
[Lau78] Jean-Louis Lauriere. A language and a program for stating and solving combinatorial problems. Artificial

Intelligence, 10(1):29 – 127, 1978.
[Lec09] Christophe Lecoutre. Constraint networks: techniques and algorithms. ISTE/John Wiley, Hoboken, NJ, 2009.

[LLLS11] Arnaud Lallouet, Yat Chiu Law, Jimmy HM Lee, and Charles FK Siu. Constraint programming on infinite data
streams. In International Joint Conference on Artificial Intelligence, pages 597–604, 2011.

[Mes97] Pedro Meseguer. Interleaved depth-first search. In Proceedings of the 15th International Joint Conference on
Artificial Intelligence, volume 2 of IJCAI ’97, pages 1382–1387, 1997.

[Min06] A. Miné. The octagon abstract domain. Higher-Order and Symbolic Computation (HOSC), 19(1):31–100, 2006.
[Min17] A. Miné. Tutorial on static inference of numeric invariants by abstract interpretation. Foundations and Trends

in Programming Languages (FnTPL), 4(3–4):120–372, 2017.
[Old93] William Older. Programming in CLP(BNR). In In Position Papers for the First Workshop on Principles and

Practice of Constraint Programming, pages 239–249, 1993.
[PFL17] Charles Prud’homme, Jean-Guillaume Fages, and Xavier Lorca. Choco Documentation. TASC - LS2N CNRS

UMR 6241, COSLING S.A.S., 2017.
[PG17] Anthony Przybylski and Xavier Gandibleux. Multi-objective branch and bound. European Journal of Opera-

tional Research, 260(3):856–872, August 2017.
[Plo70] Gordon D Plotkin. A note on inductive generalization. Machine intelligence, 5(1):153–163, 1970.
[Plo76] G. Plotkin. A Powerdomain Construction. SIAM Journal on Computing, 5(3):452–487, 1976.

[PMTB13] Marie Pelleau, Antoine Miné, Charlotte Truchet, and Frédéric Benhamou. A constraint solver based on
abstract domains. In Verification, Model Checking, and Abstract Interpretation, pages 434–454. Springer, 2013.

[PTB14] Marie Pelleau, Charlotte Truchet, and Frédéric Benhamou. The octagon abstract domain for continuous
constraints. Constraints, 19(3):309–337, 2014.

[Raj94] Arcot Rajasekar. Applications in constraint logic programming with strings. In Alan Borning, editor, Principles
and Practice of Constraint Programming, pages 109–122, Berlin, Heidelberg, 1994. Springer Berlin Heidelberg.

[Rey70] John C. Reynolds. Transformational systems and the algebraic nature of atomic formulas. Machine intelligence,
5(1):135–151, 1970.

[RvBW06] Francesca Rossi, Peter van Beek, and Toby Walsh. Handbook of Constraint Programming (Foundations of
Artificial Intelligence). Elsevier Science Inc., 2006.

[Sar93] Vijay A. Saraswat. Concurrent constraint programming. ACM Doctoral dissertation awards. MIT Press, 1993.
[SBB+18] Alexey Solovyev, Marek S. Baranowski, Ian Briggs, Charles Jacobsen, Zvonimir Rakamarić, and Ganesh

Gopalakrishnan. Rigorous estimation of floating-point round-off errors with symbolic taylor expansions.
ACM Trans. Program. Lang. Syst., 41(1), December 2018.

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

Abstract Constraint Programming
draft v0.1 0:43

[Sco82] Dana S. Scott. Domains for denotational semantics. In Mogens Nielsen and Erik Meineche Schmidt, editors,
Automata, Languages and Programming, pages 577–610, Berlin, Heidelberg, 1982. Springer Berlin Heidelberg.

[Sco16] Joseph Scott. Other Things Besides Number: Abstraction, Constraint Propagation, and String Variable Types.
PhD thesis, Acta Universitatis Upsaliensis, Uppsala, 2016. OCLC: 943721122.

[Sha98] Paul Shaw. Using Constraint Programming and Local Search Methods to Solve Vehicle Routing Problems, pages
417–431. Springer Berlin Heidelberg, Berlin, Heidelberg, 1998.

[SKH03] Axel Simon, Andy King, and Jacob M. Howe. Two variables per linear inequality as an abstract domain. In
Michael Leuschel, editor, Logic Based Program Synthesis and Transformation, pages 71–89, Berlin, Heidelberg,
2003. Springer Berlin Heidelberg.

[Smy78] M. B. Smyth. Power domains. Journal of Computer and System Sciences, 16(1):23 – 36, 1978.
[SR89] Vijay A. Saraswat and Martin Rinard. Concurrent constraint programming. In Proceedings of the 17th ACM

SIGPLAN-SIGACT symposium on Principles of programming languages, pages 232–245. ACM, 1989.
[SRP91] Vijay A. Saraswat, Martin Rinard, and Prakash Panangaden. The semantic foundations of concurrent constraint

programming. In Proceedings of the 18th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’91, pages 333–352, New York, NY, USA, 1991. ACM.

[SS96] João P. Marques Silva and Karem A. Sakallah. Grasp—a new search algorithm for satisfiability. In
Proceedings of the 1996 IEEE/ACM International Conference on Computer-aided Design, ICCAD ’96, pages
220–227, Washington, DC, USA, 1996. IEEE Computer Society.

[SS08] Christian Schulte and Peter J. Stuckey. Efficient Constraint Propagation Engines. ACM Trans. Program. Lang.
Syst., 31(1):2:1–2:43, December 2008.

[SSW94] Christian Schulte, Gert Smolka, and Jörg Würtz. Encapsulated search and constraint programming in oz. In
Proceedings of the Second International Workshop on Principles and Practice of Constraint Programming, PPCP
’94, pages 134–150, London, UK, UK, 1994. Springer-Verlag.

[ST09] Christian Schulte and Guido Tack. Weakly monotonic propagators. In Ian P. Gent, editor, Principles and Practice
of Constraint Programming - CP 2009, pages 723–730, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[STL14] Christian Schulte, Guido Tack, and Mikael Lagerkvist. Modeling and Programming with Gecode, 2014.
[Tac09] Guido Tack. Constraint Propagation – Models, Techniques, Implementation. PhD thesis, Saarland University,

2009.
[Tal19] Pierre Talbot. Spacetime Programming: A Synchronous Language for Composable Search Strategies. In

Proceedings of the 21st International Symposium on Principles and Practice of Declarative Programming (PPDP
2019), pages 18:1–18:16, New York, NY, USA, 7–9 October 2019. ACM.

[Tar33] Alfred Tarski. Pojęcie prawdy w językach nauk dedukcyjnych. 1933.
[TCMT19] Pierre Talbot, David Cachera, Éric Monfroy, and Charlotte Truchet. Combining Constraint Languages via

Abstract Interpretation. In 31st IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2019),
pages 50–58, Portland, USA, 4–6 November 2019.

[TMT20] Pierre Talbot, Éric Monfroy, and Charlotte Truchet. Modular Constraint Solver Cooperation via Abstract
Interpretation. Theory and Practice of Logic Programming, 20(6):848–863, 2020.

[VHM95] Pascal Van Hentenryck and Laurent Michel. Newton: Constraint programming over nonlinear real constraints.
Brown University, Providence, RI, 1995.

[VHMD97] Pascal Van Hentenryck, Laurent Michel, and Yves Deville. Numerica: a modeling language for global optimiza-
tion. MIT press, 1997.

[VHSD91] Pascal Van Hentenryck, Vijay Saraswat, and Yves Deville. Constraint processing in cc(FD). Technical report,
Brown University, 1991.

[VHSD98] Pascal Van Hentenryck, Vijay Saraswat, and Yves Deville. Design, implementation, and evaluation of the
constraint language cc(FD). The Journal of Logic Programming, 37(1–3):139–164, 1998.

[ZMM+19] Ghiles Ziat, Alexandre Maréchal, Pelleau Marie, Antoine Miné, and Charlotte Truchet. Combination of Boxes
and Polyhedra Abstractions for Constraint Solving. In The 8th International Workshop on Numerical and
Symbolic Abstract Domains (NSAD 2019), Porto, Portugal, October 2019.

Received December 2021

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

	Abstract
	Contents
	1 Introduction
	2 Background
	2.1 First-order logic
	2.2 Lattice theory

	3 Abstract constraint programming
	3.1 Concrete domain
	3.2 Abstract domain
	3.3 Propagate and search
	3.4 Relationship between approximations and satisfiability

	4 Domain of a variable
	4.1 Constructions over unordered universe of discourse
	4.2 Constructions over ordered universe of discourse

	5 Propagation problem
	5.1 An abstract domain for collection of variables
	5.2 Propagation problem abstract domain
	5.3 Compositionality of under-approximation
	5.4 Compositionality of over-approximation

	6 Search tree
	6.1 Queuing strategy
	6.2 Search tree abstract domain
	6.3 Single solution abstract domain
	6.4 Compositionality of over-approximation
	6.5 Compositionality of under-approximation

	7 Optimization problem
	7.1 Under-approximating branch-and-bound
	7.2 Over-approximating branch-and-bound

	8 Discussion and related work
	8.1 Existing abstract constraint solvers
	8.2 Prospective abstract constraint solvers
	8.3 Combination of abstract constraint solvers
	8.4 Concurrent constraint programming

	9 Conclusion
	References

