Modular Constraint Solver Cooperation
via Abstract Interpretation
ICLP 2020

Pierre Talbot, Eric Monfroy, Charlotte Truchet
{pierre.talbot}@uni.lu

University of Luxembourg

22nd September 2020

min @@ @

UNIVERSITE DU universite
LUXEMBOURG ~ UNIVERSITE DE NanTEs ~ alIZETS

Introduction

Many research communities centered around solving techniques and
constraint languages:

SAT solving: propositional formulas,

Linear programming: linear relations either on real numbers, integers,
or both (mixed),

Constraint programming: Boolean and arithmetic constraints with
specialized predicates (global constraints),

Answer set programming: Horn clauses w/o functions (initially),

Even larger if we consider heuristics approaches such as genetic algorithms,
evolutionary algorithms or local search.

The challenge

Each field has developed its own theory and terminology.
Pro: Very specialized and efficient on their constraint languages.

Drawback: Hard to transfer knowledge from one field to another.

The challenge

Each field has developed its own theory and terminology.
Pro: Very specialized and efficient on their constraint languages.

Drawback: Hard to transfer knowledge from one field to another.

The overarching project

Take a step back, and try to find a unified theory.

Candidate theory: abstract interpretation

Abstract interpretation is a framework to statically analyse programs and
catch bugs (Cousot and Cousot, 1977).

Interesting features for constraint reasoning

Mathematical background on lattice theory.

Abstract domains are lattices with operators encapsulating a constraint
language.

Product of domains to combine several abstract domains, thus
constraint solving techniques.

Under-approximation and over-approximation to characterize the
solutions of an abstract element (soundness and completeness).

Context

AbSolute: A constraint solver written in OCaml to experiment our ideas.

2013: Constraint solver with linear programming, constraint
programming, temporal reasoning (Pelleau and al., 2013).

Mostly over continuous domains, using over-approximations.

Cartesian product among abstract domains.
2019: Under-approximation and discrete constraint solving, with logical
combination of abstract domains (Talbot and al., 2019).

This work

Focus on domain transformers: abstract domains parametrized by other
abstract domains.

Contributions

Two domain transformers to combine abstract domains sharing

variables.
Interval propagators completion: Arithmetic constraints over product of

domains.
Delayed product: Exchange of over-approximations among abstract

domains.
Shared product to combine domain transformers.

Plan

» Abstract interpretation for constraint reasoning

Abstract interpretation in a nutshell

Il g

Al

An example

Xx>225Ax<275€0®
¢ k¢

FxF P(R)

Over-approximation

Xx>225Ax<275€ 0

Il

g

[2.25..2.75]

{x e R|x >225Ax < 2.75}

10

Under-approximation

x>225Ax<275€0

Il

[’

[2.375..2.625]

{x eR|x>225Ax <275}

11

Abstract domain for constraint reasoning

Lattice (A, <) representable in a machine where:
< is the order, where a < b if b “contains more information than" a,
L is the smallest element, U the join, ...
[Jf:®— Aandy:A— C,
closure : A — A to refine an abstract element,
split : A — P(A) to divide an element into sub-elements,

state : A — {true, false, unknown} to retreive the “solving state” of an
element.

12

Solver by abstract interpretation

A solver by abstract interpretation, with A an abstract domain:

1. solve(a € A)

2: a < closure(a)

3. if state(a) = true then

4: return {a}

5. else if state(a) = false then
6: return {}

7: else

8 (a1,...,an) < split(a)

9: return |J_solve(a;)

10: end if

We call solve([p]*) to obtain the solutions of the formula (.

13

Plan

» Domain transformers to combine domains

14

Direct product: combination of abstract domains

Consider the formula ¢ £ x>4Ax< TAy+z<A4.
X >4 A\ x < 7 can be treated in the box abstract domain Box,
v + z < 4 can be treated in the octagon abstract domain Octagon.

Solution: Rely on the direct product Box x Octagon.

15

Direct product: combination of abstract domains

Consider the formula ¢ £ x >4AXx <TAy+ z < 4.

X >4 A x < 7 can be treated in the box abstract domain Box,

v + z < 4 can be treated in the octagon abstract domain Octagon.
Solution: Rely on the direct product Box x Octagon.
Direct product

(A1 X ... X Ap, <) is an abstract domain where each operator is defined
coordinatewise:

(al7 ey an) S (b]_, ey bn) <~ Alslsn a,’ é, b,
(a1, -5 a0)) £ Uir<i<nvi(ai)
closure((a1, - ..,an)) = (closurei(ay), ..., closure,(an))

Issue: domains do not exchange information.
15

Interval propagators completion

Consider the constraint ¢ £ x > 1Ax+y+z<5Ay —z<3.
x > 1 can be interpreted in boxes,
y — z < 3 in octagons,
but x + y + z < 5 is too general for any of these two...

...and it shares its variables with the other two.

Solution: Use the notion of propagator functions to connect variables
between abstract domains.

16

Interval propagators completion

Example: Propagator x > y

We assume a projection function project : A x Vars — |,
project(a, x) = [x¢..xy| and project(a,y) = [ve.-yu:

[x>yl=Xa.ala[x > yilalaly < xi]a

IPC(A) = A x P(Prop) is a domain transformer equipping A with
propagators,

We can rely on IPC(Box x Octagon) with a propagator for
X+y+z <5,

The bound constraints will automatically be exchanged between both
domains thanks to the propagator.

17

Delayed product

IPC exchanges bound constraints, can we do better?

02 x>1IAx+y+z<B5Ay—2z<3.

Observation: When x is instantiated in x + y + z < 5, we can
transfer the constraint in octagons.

We have the delayed product DP(A1, Az) to transfer instantiated
constraints from A; into a more specialized abstract domain A,.

For instance, consider the abstract domain
DP(IPC(Box x Octagon), Octagon), whenever x = 3, we can transfer
34y + z <5 into the octagon.

18

Delayed product (improved closure)

Even better?

02 x>1IAx+y+z<5Ay—2z<3.

Observation: We can transfer over-approximations of x +y +z <5
in octagons.

For instance, if x =[1..3], we can transfer 1 + y +z<b < y+z<4
into the octagon.

A solution of y 4+ z < 4 will also be a solution of x + y 4+ z < 5, since
x must be at least equal to 1.

Formally: y(aU[x +y +z <5]%) Cy(al [y + z < 4]).

19

Shared product

Domain transformers combine abstract domain.

How to combine domain transformers? Especially when they share
sub-domains.

Solution: Shared product

A “top-level” product combining domain transformers and abstract
domains.

Merge the shared sub-domains in domain transformers using the join L.

20

Application

We experimented on the flexible job-shop scheduling problem.
Temporal constraints of the form x + y < d (with 3 variables).
We can treat most of the constraints in IPC(Box x Octagon).

Over-approximations can be sent in octagons for better efficiency.

Results

Competitive w.r.t. state of the art (Chuffed) on set of instances with
few machines.

Our goal is not (yet) to beat benchmarks, but to prove the feasibility
of our approach.

21

Plan

» Conclusion

22

Related work

Satisfiability modulo theories (SMT)

Focus on logical properties, abstract domains focus more on semantics
and modularity.

Nelson-Oppen is a fixed cooperation scheme, we can run several
cooperation schemes concurrently.

Abstract Conflict Driven Learning (D’Silva et al., 2013).

Very nice theoretical framework to integrate solving and abstract
interpretation.
Still a big gap between theory and practice.

TOY (Estévez-Martin et al., 2009): notion of bridges among variables,
subsumed by /PC in our framework.

We aim to reduce the gap between practice and theory.

23

Conclusion

Constraint solver = abstract domain.
Cooperation scheme = domain transformer.
We show two cooperation schemes (/PC and DP).

The shared product allows us to use several cooperation schemes
concurrently and in a modular way.

) github.com/ptal/AbSolute/tree/iclp2020

24

github.com/ptal/AbSolute/tree/iclp2020

	Introduction
	Abstract interpretation for constraint reasoning
	Domain transformers to combine domains
	Conclusion

