
Comparison of Hyperparameter Optimization
Methods for Selecting Search Strategy of Constraint

Programming Solvers
1st Hedieh Haddad1, 2nd Pierre Talbot2, 3rd Pascal Bouvry2

1SnT, University of Luxembourg, Esch-sur-Alzette, Luxembourg
2University of Luxembourg, Esch-sur-Alzette, Luxembourg

hedieh.haddad@uni.lu, pierre.talbot@uni.lu, pascal.bouvry@uni.lu

Abstract—Selecting the most effective search strategy for new
problems in constraint programming is a significant challenge.
While autonomous search strategy design has been extensively
researched, this study adopts a different approach. We present a
comprehensive comparison of various hyperparameter optimiza-
tion methods, treating the search strategies of constraint solvers
as hyperparameters. This approach aims to enhance the selection
process of search strategies, improving solver efficiency and
effectiveness, and relieving the users from the burden of choosing
the right one for their problems.

We introduce the probe and solve algorithm, a generic method
that operates in two phases: a probing phase, where various
strategies are explored and ranked using hyperparameter opti-
mization methods, and a solving phase, where the top-ranked
strategy is used to solve the problem. We include a comparative
analysis between the probe and solve algorithm and the solver’s
default search strategies.

Our results demonstrate that Bayesian optimization is the best
hyperparameter optimization method we have tested to select the
search strategy. Furthermore, it can outperform state-of-the-art
dynamic search strategies across various benchmarks and solvers.
Bayesian optimization showed superior performance in 20%-
30% of cases, with both our algorithm and baselines achieving
equal results in 50%-60% of instances, thus emerging as the most
suited for selecting the search strategy.

Index Terms—Hyperparameter optimization, constraint pro-
gramming, search strategies, Bayesian optimization

I. INTRODUCTION

Constraint programming (CP) is a versatile computational
method that deals with mathematical relations or constraints. It
offers a declarative way to model various real-world problems,
from scheduling to musical composition [1]. This versatility
sets it apart from other methods like SAT, which focuses on
Boolean formulas [2], and linear programming [3] which is
designed to solve linear constraints.

The efficiency of CP largely depends on the design of
search strategies, which are complex to devise due to the need
for deep solver understanding. Several studies have aimed to
create a universal search strategy, but no single strategy has
proven to dominate others [4], [5]. This highlights the need for
a method to select the best search strategy for each problem.

In this paper, we introduce the probe and solve algorithm
(PSA), which uses hyperparameter optimization (HPO) tech-
niques to explore and identify the most effective search strat-
egy for a specific problem. HPO, a well-established domain

in machine learning [6], has seen limited application in CP,
However, viewing search strategies as solver hyperparameters
opens up new insights for their automatic optimization, thereby
identifying the most effective search strategies for the problem
at hand.

When too many parameters are considered, the hyper-
parameter space becomes too vast for efficient exploration.
Evaluating each search strategy is time-consuming as it in-
volves calling the solver. In general, increasing the number
of hyperparameters does not necessarily lead to increased
efficiency. Therefore, for the purposes of this study, we focus
on the commonly used search strategies, namely the variable
selection strategy and the value selection strategy.

There are some popular HPO techniques, including: grid
search, random search [7], hyper-band optimization [8], and
Bayesian optimization [9]. Our main contribution is employing
these methods for the selection of variable and value selection
strategies in CP solvers. However, we exclude grid search due
to its exhaustive nature, which requires substantial resources
to check all possible sets of hyperparameters, rendering it
inefficient and impractical.

Our algorithm unfolds in two stages: probing and solving. In
the probing stage, we execute the solver using various search
strategies for a fraction of a predetermined global timeout.
We then rank these strategies and select the most effective
one for solving stage (Section III). A key aspect of this stage
is that it provides a ranking of different search strategies for
a specific problem, offering insights into the better set of
hyperparameters. This information can guide subsequent user
decisions. During the solving stage, we run the solver with the
chosen strategy for the remaining timeout and deliver the final
solution. At this point, the user has the option to either utilize
the set proposed by PSA or implement their own strategy
based on the provided ranking (Section III-A).

Our method, designed to enhance solver performance by
identifying a problem-specific search strategy, is evaluated
using benchmark problems from the XCSP3 [10] competition
with ACE solver [11]. The results are compared with the
default and most commonly used search strategies in XCSP3,
as mentioned in [12]. Our algorithm integrates seamlessly with
any XCSP3 solvers and dynamically determines the number
of probing rounds, ensuring flexibility and adaptability based



on the problem’s complexity and requirements (Section IV).
The findings indicate that the algorithm exhibits supe-

rior performance within the ACE solver, outperforming the
baseline measures. This investigation seeks to determine if
the implementation of more intricate search strategies can
boost solver performance without necessitating an increase in
architectural complexity (Section IV-C).

We hope our work highlights the potential of HPO tech-
niques, particularly Bayesian optimization, in selecting search
strategies. We aim to inspire further exploration of these meth-
ods to unlock new possibilities for efficiency and effectiveness
in problem-solving.

II. BACKGROUND

A. Constraint Programming

A constraint satisfaction problem (CSP) is a tuple ⟨X,D,C⟩
where X is a set of variables, D are the domains, and C is the
set of constraints. An extension is the constraint optimization
problem (COP) which is a tuple ⟨X,D,C, obj ⟩ with obj ∈ X
where the goal is to find the best objective possible (either by
minimization or maximization). Without loss of generalities,
we suppose minimization problems in our definitions and
algorithms.

The constraint solver is essentially a backtracking procedure
dividing the domains of the variable following a certain search
strategy and pruning the domains using a form of logical
inference called propagation [13].

Different problem domains and characteristics may require
different search strategies to achieve the best performance.
Therefore, the design and evaluation of search strategies are
ongoing research areas in CP, aiming to provide users with
guidance and tools for effectively solving complex prob-
lems [14], [15].

III. PROBE AND SOLVE ALGORITHM

In this section, we introduce the Probe and Solve algorithm
(PSA), a generic method designed to identify effective search
strategies for resolving constraint problems. The algorithm
unfolds in two stages: the probing stage and the solving stage.
The probing stage navigates the realm of search strategies
utilizing an HPO method, while the solving stage employs
the most effective strategy to address the problem.

We denote Svar the set of variable selection strategies’
names (as recognized by the solvers), Sval the set of value
selection strategies’ names.

To summarize, the HPO method is in charge of optimizing
two arrays of integers representing respectively Svar and Sval .
We write HP := P(Svar × Sval) the set of all possible
combination of hyperparameters.

A. Algorithm

Consider GT as the global timeout allocated for solving a
CSP. A specific portion of this time, denoted as PT (probing
timeout), is exclusively reserved for the probing phase. The
value of PT is a significant parameter in our algorithm, and

we have performed comprehensive experiments to optimize it
within the context of the GT .

During the probing phase, PSA assesses a variety of search
strategies from the set HP . Each strategy is evaluated for
a limited duration, initially set to 5 seconds, denoted CT
(current timeout). This duration is not only sufficient for
the computational requirements of simpler problems but also
considers the necessary overhead for transmitting information
to the solver and retrieving the solutions.

The algorithm strives to solve the problem within this time-
out. If the solver successfully identifies the objective within
this timeframe, it proceeds to execute the next experiment
in the probing phase using this timeout. However, if the
solver fails to find any objective result within the timeout,
the approach adapts by extending the defined timeout. This
increment is determined by a geometric coefficient, set to 1.2,
which multiplies the current timeout CT , thereby increasing
it.

The timeout continues to increase incrementally until an ob-
jective is discovered or PT is reached, using the calculation of
elapsed time, denoted ET . This adaptive approach ensures that
the algorithm can effectively manage problem complexities
while maintaining efficiency and providing valuable insights
into more complex problems, particularly in scenarios where
a solution cannot be found within 5 seconds.

Selecting a large probing timeout will decrease the number
of combinations we can test and the effectiveness of the
HPO method. However, choosing a small timeout will prevent
us from obtaining any solution and make the comparison
between the two runs more challenging. In our experiments,
we compare two runs using the objective value found and, in
the case of ties, the time it took to reach that objective value.

At the conclusion of the probing phase, we obtain a ranking
of the tested search strategies, and we select the best one for
the solving phase.

We now provide a more explicit definition of our approach
in Algorithm 1.

The algorithm accepts a COP ⟨X,D,C, obj ⟩, a hyperparam-
eter function hpo, the set of available search strategies HP ,
and two timeouts: GT and PT .

The HPO method, denoted as hpo(HP , psolve), takes the
set of search strategies and an evaluation function. It returns
the ranking of the best search strategies, the best objective
found so far.

We assume a function solve(⟨X,D,C, obj ⟩, s, T ) that op-
timizes a given COP using the search strategy s ∈ HP under
the timeout T . The solving phase operates for the remaining
duration of the global timeout and employs the best search
strategy identified in the probing phase to solve the constraint
problem.

IV. EXPERIMENTS

In this section, we evaluate the performance of the PSA
on a set of benchmark problems from different domains, and
we use two metrics to measure the performance: the objective
value and the solving time.



Algorithm 1 Probe and Solve Algorithm (PSA)
function PSA(⟨X,D,C, obj ⟩, hpo,HP ,GT ,PT )

Initialize CT to 5 seconds
Initialize Geo Coefficient to 1.2
Initialize ET to 0 seconds
Initialize best obj to ∞
while ET < PT do
psolve ← λs.solve(⟨X,D,C, obj ⟩, s,CT )
ranking , obj ← hpo(HP , psolve)
ET ← ET + CT
if obj ̸=∞ then
min(obj , best obj )

else
CT ← CT ×Geometric Coefficient

end if
end while
if best obj = ∞ then

return solve(⟨X,D,C, obj ⟩, ranking [0],GT − PT )
else

return min(best obj , solve(⟨X,D,C ∧ obj <
best obj , obj ⟩, ranking [0],GT − PT ))

end if
end function

A. Experimental Setup

The experiments presented in this paper were carried out
using the high-performance computing facilities of the Univer-
sity of Luxembourg [16] – see https://hpc.uni.lu. The technical
specifications of a cluster compute node are: 2xAMD Epyc
ROME 7H12 @ 2.6 GHz [64c/280W] processor with 256 GB
RAM.

We detail the experimental setup for our evaluation, en-
compassing the benchmark problems, solvers, HPO methods,
baseline methods, and hyperparameters. Our study utilizes
data from the fifth international XCSP3 constraint solver
competition conducted in 2023 [11]. We specifically target
all the COP instances derived from this competition, totaling
250 instances that cover a variety of constraints and objective
functions. For each problem, we align our global timeout
setting of 1200 seconds with the one utilized by the XCSP3
challenge, a recognized competition for constraint solvers.

Our objective is to validate that PSA produces encouraging
results. To this end, we have opted to set the probing phase
timeout to different percentages of the global timeout. This
enables us to compare the efficiency and applicability of this
timeout and to broadly determine whether a shorter or longer
probing phase yields superior results.

B. XCSP3 Benchmark with ACE Solver

In this subsection, we evaluate the performance of PSA
on the XCSP3 benchmark problems. XCSP3 is an XML-
based format designed to represent instances of combinatorial
constrained problems from the perspective of CP. It is an
intermediate integrated format that can represent each instance
separately while preserving its structure [17].

We compare the results of our algorithm with four baseline
strategies. These baselines encompass three popular vari-
able selection strategies including PickOnDom [12], FrbaOn-
Dom [18], and DomWDeg/CACD [12], [19] which are vari-
able selection strategies utilized in constraint programming
and the solver’s default search strategy. The performance is
evaluated based on the objective value and the time taken to
solve. For the three popular frameworks, we adhere to the
solver’s default value selection strategy as done in [12]. For
the solver’s default search strategy, we refrain from specifying
any variable or value selection strategies, leaving this choice
to the solver.

Our goal is to observe the influence of these diverse com-
binations of search strategies on the solver’s performance. We
strive to identify an effective search strategy using PSA. This is
achieved by examining all the variable selection strategies and
value selection strategies provided by the ACE solver itself.

The solver offers a wide range of strategies for both variable
and value selection strategies, as shown below:

Variable selection strategies:

{RunRobin, Wdeg, Memory, PickOnDom, FrOnDom,
WdegOnDom, ProcOnDom, Regret, FrbaOnDom, Ddeg}

Value selection strategies:

{Dist, OccsR, Median, AsgsFp, Flrs, Bivs, First, AsgsFm,
Last, Robin, RunRobin, Bivs2, InternDist, Occs, FlrsE}

1) Random Search: In this section, we evaluate the per-
formance of PSA when random search is employed as the
HPO approach. Our focus is on comparing the results of PSA
with baseline performances, considering all variable selection
strategies and value selection strategies provided by the ACE
solver as hyperparameters.

Upon applying random search as the HPO approach, it is
observed that the results are not as robust as the ones obtained
using the baselines. When considering the random search with
a ratio of 0.2, it is observed that the results vary across different
strategies. For instance, PSA outperformed the CACD strategy
in 18.07% of the instances, while CACD achieved a superior
objective of 23.11% of the cases. Similarly, PSA surpassed the
FRBA strategy in 15.04% of the cases, while FRBA attained
a higher objective of 22.36% of the instances, and for the rest
of them, both approaches yielded equivalent results.

This can be attributed to several factors, the most significant
being the inherent randomness of the approach. Despite this,
random search remains a popular choice in the HPO field
due to its simplicity and low computational overhead, which
ensures minimal system strain during execution.

The results of PSA with random search in probing ratio 0.2,
are illustrated in Figure 1a.

2) Hyper-band Search : For the second step, we assessed
the performance of PSA when hyper-band search is utilized
as the HPO method taking into account all variable selection
strategies and value selection strategies mentioned above.



Hyper-band search is a resource-efficient variant of random
search that uses a bandit-based approach to allocate resources
to different configurations. This method is known for its ability
to handle a large number of hyperparameters effectively, which
could potentially lead to improved results.

When employing hyper-band search with a probing ratio
of 0.2, the results demonstrate variability across different
strategies. For instance, PSA outperformed the PICK3 strategy
in 17.01% of the instances, while PICK3 achieved a superior
objective in 22.45% of the instances. This indicates that while
the hyper-band method can effectively handle a large number
of hyperparameters, the performance can vary significantly de-
pending on the specific strategy employed and the complexity
of the problem at hand.

The results of PSA with hyper-band search are illustrated
in Figure 1b. This figure will provide insights into the per-
formance of PSA with hyper-band search compared to the
baseline strategies, thereby offering a comprehensive view of
the effectiveness of different HPO methods in enhancing the
solver’s performance.

3) Bayesian Optimization: In the next step, we examined
the performance of PSA when Bayesian optimization is em-
ployed as the HPO method. Upon implementing Bayesian
optimization as the HPO approach, we anticipate a different set
of results compared to random search and Hyper-band search.

Bayesian optimization is a sequential design strategy for
the global optimization of black-box functions that works
by constructing a posterior distribution of functions to find
the best balance between exploration and exploitation. This
method is known for its efficiency and effectiveness in high-
dimensional spaces, which could potentially lead to improved
results.

It is observed that PSA outperforms the default solver in
29.49% of the models. Interestingly, in 44.87% of the models,
PSA and the baselines produce identical results, suggesting
that no single strategy consistently excels across all situations.

When employing Bayesian optimization with a probing
ratio of 0.2, the results demonstrate variability across different
strategies. For instance, PSA outperformed the FRBA strategy
in 25.20% of the instances, while FRBA achieved a superior
objective of 19.92% of the instances. Indeed, the results
suggest that employing Bayesian optimization with a probing
ratio of 0.2 can yield better results than all the baselines.
This demonstrates the potential of Bayesian optimization as
an effective HPO approach, particularly when dealing with
complex problems with a large number of hyperparameters.

The results of PSA with Bayesian optimization in probing
ratio 0.2, are illustrated in Figure 1c.

C. Detailed Analysis

The detailed results obtained from the various HPO methods
and different probing ratios are presented in Table I. We
conducted tests using a range of probing ratios, specifically
5%, 10%, 20%, 50%, and 100% of the global timeout. Our
results indicated that, for our specific set of problems, a
probing ratio of 20% generally performed better than the

others. Also, this table incorporates two additional columns:
Fallback to Default and Same Search Strategy. The Fallback
to Default column measures the instances where PSA could
not determine a search strategy within the given timeframe,
leading to the use of the default search strategy during the
solving phase. The Same Search Strategy column signifies the
instances where PSA identified a search strategy identical to
the solver’s default search strategy post the probing phase.
These additional insights enhance our understanding of PSA’s
performance and decision-making process.

Furthermore, it is important to note that unlike other
approaches which are invasive and require modifications to
the solver’s code, our approach is non-invasive and generic,
capable of working with any solver. Also, it can dynamically
change some crucial parameters of HPO, eliminating the need
for their initialization beforehand. This addresses a significant
limitation as it allows PSA to adaptively set the number of
rounds and timeout for each round, offering a more flexible
and efficient approach. For instance, in contrast to the static
nature of classical Bayesian optimization, our approach can
dynamically adjust these parameters based on the problem’s
complexity and the solver’s performance, thereby enhancing
the overall efficiency and effectiveness of the solver.

D. Examining More Solvers Parameters

In our study, we explored various solver parameters and
strategies. Here, we discuss our findings:

Search Strategies with Restricted Subset of Variables
and Value Selection Strategies. We implemented different
subsets of search strategies as hyperparameters for PSA to
see if PSA with static search strategies could outperform
the dynamic strategies. Our results indicate that dynamic
approaches surpass static approaches in this context.

Nested Search Strategies. We also experimented with
nested search strategies. The idea was to assign different
search strategies to each set, hypothesizing that for one ob-
jective a pair can work well, while for another there might be
a better one. However, the results were not as expected, and
using nested search strategies could not improve the results.

Solver Parameters. We also examined different restart
annotations such as Luby sequence restart and geometric
restart options, including the number of nodes explored for
restarting [20]. We also explored different solver parameters,
such as the number of last conflict options. However, due to
the vast number of options and limited global timeout, not
all of these options were beneficial for our specific approach.
In some cases, they even worsened the approach. This could
be attributed to the state-space becoming too large and the
probing phase is too short to find a good configuration.

V. CONCLUSION

In this research, we explored the application of diverse hy-
perparameter optimization methods to search strategies within
constraint programming solvers. Our aim was to establish a
simple and generic approach that enables users, particularly
those new to constraint problem modeling, to pinpoint both



(a) Random search with all available Svar and Sval (b) Hyper-band with all available Svar and Sval

(c) Bayesian optimization with all Svar and Sval

Fig. 1: Comparative performance of PSA and baselines: an examination of variable and value selection strategies with probing timeout ratio 0.2. The
comparison is conducted across different baselines and is categorized into three sections: comprehensive analysis with the set of all variable/value selection
strategies using (a) Random search (b) Hyper-band search (c) Bayesian optimization.

effective and inefficient search strategies swiftly. This proves
particularly beneficial when there is no initial understanding
of which search strategies may be successful.

Our results indicate that PSA can surpass the baseline
strategies in ACE, which are typically the default in constraint
models. Interestingly, of the various hyperparameter optimiza-
tion methods we assessed, Bayesian optimization proved to
be the most suitable for our study. It predominantly exhibited
superior performance, outdoing the baselines using different
ratios. This highlights the potential of Bayesian optimization to
boost the performance of PSA, especially in high-dimensional
spaces. However, there are instances where no combination of
variable and value selection strategies can exceed the solver’s
default.

By persistently evaluating and enhancing these strategies,
researchers can aid in the development of more potent tools
and techniques for resolving complex constraint problems

across a broad spectrum of domains. This research serves
as a foundation for more advanced and efficient constraint
problem-solving methodologies. We anticipate further refining
our approach and achieving superior results in future studies.

ACKNOWLEDGMENT

The experiments presented in this paper were carried out
using the HPC facilities of the University of Luxembourg [16]
– see https://hpc.uni.lu. This work is partially funded by the
joint research program UL/SnT–ILNAS on Technical Stan-
dardisation for Trustworthy ICT, Aerospace, and Construction.



TABLE I: Comprehensive results for all the possible ratios in comparison with the baselines.

Method Baselines Results (%) Additional Results (%)
PSA Better Baselines Better Equal Results Fallback to default Same search strategy

Random Search
All available Svar and Sval

0.05

CACD 19.67 22.59 57.74

24.70 0.00FRBA 19.03 21.46 59.51
PICK3 26.32 23.08 50.61
Default 12.66 26.58 60.76

0.1

CACD 16.81 25.21 57.98

17.89 0.41FRBA 16.26 23.98 59.76
PICK3 19.51 26.42 54.07
Default 15.38 21.79 62.82

0.2

CACD 18.07 23.11 58.82

13.01 0.81FRBA 15.04 22.36 57.32
PICK3 19.51 24.39 56.10
Default 11.54 30.77 57.69

0.5

CACD 21.70 16.98 61.32

11.82 0.00FRBA 15.00 18.18 66.82
PICK3 20.91 19.55 59.55
Default 17.46 19.05 63.49

1.0

CACD 1.67 13.33 85.00

15.27 0.00FRBA 1.56 13.28 85.16
PICK3 0.76 14.50 84.73
Default 2.33 6.98 90.70

Hyper-band method
All available Svar and Sval

0.05

CACD 12.66 28.69 58.65

25.30 0.81FRBA 11.84 30.20 57.96
PICK3 19.18 31.84 48.98
Default 10.26 26.92 62.82

0.1

CACD 13.87 31.09 55.04

17.48 0.81FRBA 11.79 29.27 58.94
PICK3 15.04 32.11 52.85
Default 12.82 33.33 53.85

0.2

CACD 10.64 24.82 64.54

21.77 0.68FRBA 9.52 18.37 72.11
PICK3 17.01 22.45 60.54
Default 9.09 31.82 59.09

0.5

CACD 9.38 22.66 67.97

17.91 0.75FRBA 5.26 17.29 77.44
PICK3 10.45 20.9 68.66
Default 8.11 16.22 75.68

1.0

CACD 0.0 1.15 98.85

25.8 0.0FRBA 0.0 0.0 100.0
PICK3 0.0 1.08 98.92
Default 0.0 0.0 100.0

Bayesian Optimization
All available Svar and Sval

0.05

CACD 23.11 24.37 52.52

25.60 0.81FRBA 20.73 25.20 54.07
PICK3 21.95 26.02 52.03
Default 19.23 30.77 50.00

0.1

CACD 23.85 25.94 50.21

16.19 0.80FRBA 25.10 21.86 53.04
PICK3 25.91 24.29 49.80
Default 27.85 24.05 48.10

0.2

CACD 26.89 21.85 51.26

13.0 1.21FRBA 25.20 19.92 54.88
PICK3 26.83 24.39 48.78
Default 29.49 25.64 44.87

0.5

CACD 25.63 23.95 50.42

8.82 1.56FRBA 23.98 21.14 54.88
PICK3 26.02 24.39 49.59
Default 28.21 24.36 47.44

1.0

CACD 2.94 26.47 70.59

8.53 2.40FRBA 3.25 25.20 71.54
PICK3 2.85 26.42 70.73
Default 2.56 25.64 71.79



REFERENCES

[1] F. R. Peter vanBeek, Toby Walsh, “Handbook of Constraint Pro-
gramming [Book],” iSBN: 9780080463803. [Online]. Available: https://
www.oreilly.com/library/view/handbook-of-constraint/9780444527264/

[2] A. Biere, M. Heule, H. Van Maaren, and T. Walsh, “Handbook of
Satisfiability: Second Edition,” ser. Frontiers in Artificial Intelligence
and Applications, vol. 336. IOS Press, Feb. 2021. [Online]. Available:
http://ebooks.iospress.nl/doi/10.3233/FAIA336

[3] J. M. Bernd Gärtner, Understanding and Using Linear Programming,
ser. Universitext. Berlin, Heidelberg: Springer, 2007. [Online].
Available: http://doi.org/10.1007/978-3-540-30717-4

[4] H. Simonis and B. O’Sullivan, “Search Strategies for Rectangle
Packing,” in Principles and Practice of Constraint Programming, P. J.
Stuckey, Ed. Berlin, Heidelberg: Springer, 2008, pp. 52–66. [Online].
Available: https://doi.org/10.1007/978-3-540-85958-1 4

[5] E. Teppan, G. Friedrich, and A. Falkner, “QuickPup: A Heuristic
Backtracking Algorithm for the Partner Units Configuration Problem,”
Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 26, no. 2, pp. 2329–2334, Jul. 2012. [Online]. Available:
https://doi.org/10.1609/aaai.v26i2.18979

[6] T. Agrawal, Hyperparameter Optimization in Machine Learning:
Make Your Machine Learning and Deep Learning Models More
Efficient. Berkeley, CA: Apress, 2021. [Online]. Available: https:
//doi.org/10.1007/978-1-4842-6579-6

[7] J. Bergstra and Y. Bengio, “Random Search for Hyper-Parameter
Optimization,” The Journal of Machine Learning Research, vol. 13, pp.
281–305, Mar. 2012. [Online]. Available: https://api.semanticscholar.
org/CorpusID:15700257

[8] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar,
“Hyperband: A Novel Bandit-Based Approach to Hyperparameter
Optimization,” Jun. 2018, arXiv:1603.06560 [cs, stat]. [Online].
Available: http://arxiv.org/abs/1603.06560

[9] J. Ungredda and J. Branke, “Bayesian Optimisation for Constrained
Problems,” May 2021, arXiv:2105.13245 [cs, stat]. [Online]. Available:
http://arxiv.org/abs/2105.13245

[10] G. Audemard, C. Lecoutre, and E. Lonca, “Proceedings of the
2023 XCSP3 Competition,” Mar. 2024. [Online]. Available: https:
//doi.org/10.48550/arXiv.2312.05877

[11] C. Lecoutre, “ACE, a generic constraint solver,” Jan. 2023,
arXiv:2302.05405 [cs]. [Online]. Available: http://arxiv.org/abs/2302.
05405

[12] G. Audemard, C. Lecoutre, and C. Prud’homme, “Guiding Backtrack
Search by Tracking Variables During Constraint Propagation.” Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2023. [Online]. Available:
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2023.9

[13] K. Apt, “Constraint propagation algorithms,” in Principles of Constraint
Programming. Cambridge: Cambridge University Press, 2003, pp. 254–
298. [Online]. Available: https://doi.org/10.1017/CBO9780511615320.
007

[14] P. Talbot, “Spacetime Programming: A Synchronous Language
for Composable Search Strategies,” in Proceedings of the 21st
International Symposium on Principles and Practice of Declarative
Programming, ser. PPDP ’19. New York, NY, USA: Association
for Computing Machinery, Oct. 2019, pp. 1–16. [Online]. Available:
https://doi.org/10.1145/3354166.3354183

[15] T. Schrijvers, G. Tack, P. Wuille, H. Samulowitz, and P. J.
Stuckey, “Search combinators,” Constraints, vol. 18, no. 2, pp.
269–305, 2013. [Online]. Available: http://link.springer.com/article/10.
1007/s10601-012-9137-8

[16] S. Varrette, H. Cartiaux, S. Peter, E. Kieffer, T. Valette, and
A. Olloh, “Management of an Academic HPC & Research Computing
Facility: The ULHPC Experience 2.0,” in Proceedings of the
2022 6th High Performance Computing and Cluster Technologies
Conference, ser. HPCCT ’22. New York, NY, USA: Association
for Computing Machinery, Oct. 2022, pp. 14–24. [Online]. Available:
https://doi.org/10.1145/3560442.3560445

[17] F. Boussemart, C. Lecoutre, G. Audemard, and C. Piette, “XCSP3:
An Integrated Format for Benchmarking Combinatorial Constrained
Problems,” Nov. 2022, arXiv:1611.03398 [cs]. [Online]. Available:
http://arxiv.org/abs/1611.03398

[18] H. Li, M. Yin, and Z. Li, “Failure Based Variable Ordering Heuristics for
Solving CSPs (Short Paper),” in LIPIcs, Volume 210, CP 2021, vol. 210,
2021. [Online]. Available: https://doi.org/10.4230/LIPICS.CP.2021.9

[19] W. Hugues, C. Lecoutre, A. Paparrizou, and S. Tabary, “Refining
Constraint Weighting,” Nov. 2019, pp. 71–77. [Online]. Available:
https://doi.org/10.1109/ICTAI.2019.00019

[20] S. Haim and M. Heule, “Towards Ultra Rapid Restarts,” Feb. 2014,
arXiv:1402.4413 [cs]. [Online]. Available: http://arxiv.org/abs/1402.
4413

https://www.oreilly.com/library/view/handbook-of-constraint/9780444527264/
https://www.oreilly.com/library/view/handbook-of-constraint/9780444527264/
http://ebooks.iospress.nl/doi/10.3233/FAIA336
http://doi.org/10.1007/978-3-540-30717-4
https://doi.org/10.1007/978-3-540-85958-1_4
https://doi.org/10.1609/aaai.v26i2.18979
https://doi.org/10.1007/978-1-4842-6579-6
https://doi.org/10.1007/978-1-4842-6579-6
https://api.semanticscholar.org/CorpusID:15700257
https://api.semanticscholar.org/CorpusID:15700257
http://arxiv.org/abs/1603.06560
http://arxiv.org/abs/2105.13245
https://doi.org/10.48550/arXiv.2312.05877
https://doi.org/10.48550/arXiv.2312.05877
http://arxiv.org/abs/2302.05405
http://arxiv.org/abs/2302.05405
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2023.9
https://doi.org/10.1017/CBO9780511615320.007
https://doi.org/10.1017/CBO9780511615320.007
https://doi.org/10.1145/3354166.3354183
http://link.springer.com/article/10.1007/s10601-012-9137-8
http://link.springer.com/article/10.1007/s10601-012-9137-8
https://doi.org/10.1145/3560442.3560445
http://arxiv.org/abs/1611.03398
https://doi.org/10.4230/LIPICS.CP.2021.9
https://doi.org/10.1109/ICTAI.2019.00019
http://arxiv.org/abs/1402.4413
http://arxiv.org/abs/1402.4413

	Introduction
	Background
	Constraint Programming

	Probe and Solve Algorithm
	Algorithm

	Experiments
	Experimental Setup
	XCSP3 Benchmark with ACE Solver
	Random Search
	Hyper-band Search 
	Bayesian Optimization

	Detailed Analysis
	Examining More Solvers Parameters

	Conclusion
	References

