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This seminar in a nutshell!

We present the “fusion” of...

Constraint reasoning + Abstract interpretation

(and lattice theory)

that gives us abstract constraint reasoning.

WHY?

• A framework for combining constraint solvers.

• Constraint solving on GPUs.
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Abstract constraint reasoning
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• Data structures = lattices

• Algorithms = extensive functions

• Example: f (x) = x t [2..∞] models the constraint x ≥ 2.

• Lattice + Extensive function = Abstract domains
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I. A framework for combining constraint solvers

SAT [DHK13]

SMT [CCM13]

Logic programming [Cou20]

Constraint programming [Pel+13]

Linear programming

Multi-objective optimization

Multilevel programming

...

Abstract domains
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II. Towards a theory for constraint solving on GPUs

f
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• f (x) = x t [2..∞] models the constraint x ≥ 2.

• g(x) = x t [−∞..2] models the constraint x ≤ 2.

• Concurrent execution: f || g = [2..2]

A new twist on an old idea: asynchronous iterations of abstract interpretation [Cou77].
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I. A framework for combining constraint solvers
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2. Abstract Constraint Programming

3. Products of Abstract Domains

4. Soundness and Completeness
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III. Conclusion
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(Traditional) Constraint Programming

5



An example of constraint problem

Task 5

Task 4

Task 3

Task 2

Task 1

Constraint problem: Tasks have a duration, use resources

(#CPU/#GPU), and have precedence relations.

Goal: Find a minimal schedule of the tasks on the HPC.
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An example of constraint problem

Task 5

Task 4

Task 3

Task 2

Task 1

• Constraint programming: we only specify what should be the

solution using relations on variables (declarative programming).

• But we do not program how to compute the solution.
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Scheduling problem RCPSP

NP-complete optimisation problem:

• T is a set of tasks, di ∈ N the duration of task i .

• P are the precedences among tasks: i � j ∈ P if i must terminate

before j starts.

• R is a set of resources where k ∈ R has a capacity ck ∈ N.

• Each task i uses a quantity rk,i of resources k .

Goal: find a (minimal) planning of tasks T that satisfies precedences in

P without exceeding the capacity of available resources.
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Example with 5 tasks and 2 resources

T1

(2,2)

T2

(0,1)

T3

(3,3)

T4

(2,3)

T5

(1,0)

Time units

Resources consumption

capacity r1

capacity r2

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

Time units

T1

T2 T4 T3

T5

0 1 2 3 4 5 6 7 8
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Constraints model

• Variables : si ∈ {0..h − 1} is the starting time of task i .

• Constraints :

∀(i � j) ∈ P, si + di ≤ sj (1)

∀j ∈ [1..n], ∀i ∈ [1..n] \ {j},
bi,j ⇔ (si ≤ sj ∧ sj < si + di )

(2)

∀j ∈ [1..n], rk,j + (
∑

i∈[1..n]\{j}

rk,i ∗ bi,j) ≤ ck (3)

1. Temporal constraints (eq. 1)

2. Resources constraints (eq. 2 and 3): tasks decomposition of

cumulative.
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How does a constraint solver work?

Constraint satisfaction problem (CSP)

A CSP is a pair 〈d ,C 〉, example:

〈{T1 7→ {1, 2, 3, 4},T2 7→ {2, 3, 4}}, {T1 ≥ T2,T1 6= 4}〉

A solution is {T1 7→ 2,T2 7→ 2}.
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How does a constraint solver work?

A constraint solving algorithm: propagate and search

• Propagate: Remove inconsistent values from the variables’ domain.

T1 ≥ T2 {T1 7→ {1, 2, 3, 4},T2 7→ {2, 3, 4}}
T1 6= 4 {T1 7→ {2, 3, 4},T2 7→ {2, 3, 4}}
T1 ≥ T2 {T1 7→ {2, 3},T2 7→ {2, 3, 4}}
T1 6= 2 {T1 7→ {2, 3},T2 7→ {2, 3}}
T1 ≥ T2 {T1 7→ {2, 3},T2 7→ {2, 3}}

A constraint c is implemented by a propagator function pc : D → D.

• Search: Divide the problem into (complementary) subproblems

explored using backtracking.

• Subproblem 1: 〈{T1 7→ {2},T2 7→ {2, 3}}, {T1 ≥ T2,T1 6= 4}〉
• Subproblem 2: 〈{T1 7→ {3},T2 7→ {2, 3}}, {T1 ≥ T2,T1 6= 4}〉
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Constraint solver: propagate and search

A classic solver in constraint programming:

1: solve(〈d ,C 〉)
2: 〈d ′,C 〉 ← propagate(〈d ,C 〉)
3: if d ′ is an assignment then

4: return {d ′}
5: else if d ′ has an empty domain then

6: return {}
7: else

8: 〈d1, . . . , dn〉 ← branch(d ′)

9: return
⋃n

i=0 solve(〈di ,C 〉)
10: end if
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Abstract Constraint Programming
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Abstract domain for constraint reasoning [Pel+13; Tal+21]

An abstract domain 〈Abs,≤,t,⊥, γ, J.K, refine, split〉 is a lattice such that:

• Abs is a set of elements representable in a machine.

• ≤ is a partial order.

• t performs the join of two elements (“union of information”).

• ⊥ is the smallest element (“initial state”).

• γ : A→ D[ is a monotone concretization function.

• J.K : Φ→ Abs is a partial interpretation function turning a constraint into

an element of the abstract domain.

• refine : Abs → Abs is an extensive function, e.g., a ≤ refine(a), refining

an abstract element (“gain information”).

• split : Abs → P(Abs) is an extensive function dividing an abstract

element into a set of sub-elements.

• �: Abs × Φ: a � ϕ holds whenever γ(a) ⊆ JϕK[.

• . . .
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Box abstract domain [CC77]

• Let I be the lattice of integer intervals, and X a set of variables.

• Then Box = [X 9 I ] is the abstract domain of box.

It treats constraints of the form

x ≤ d x ≥ d

where d ∈ Z is a constant.

Example of abstract domain operations:

• Jx ≤ dK , {x 7→ [−∞..d ]},
• σ ≤ τ , ∀x ∈ dom(σ), x ∈ dom(τ) ∧ σ(x) ≤ τ(x) where dom(σ)

denotes the domain of σ,

• σ t τ , λx .


σ(x) t τ(x) if x ∈ dom(σ) ∩ dom(τ)

σ(x) if x ∈ dom(σ) \ dom(τ)

τ(x) if x ∈ dom(τ) \ dom(σ)
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Integer octagon [Min06]

An integer octagon is defined over a set of variables (x0, . . . , xn−1) and

constraints:

±xi −±xj ≤ d

where d ∈ Z is a constant.

Complexity of the main operations:

• join is O(n2).

• refine: Floyd-Warshall algorithm in O(n3), incremental version in

O(n2) to add a single constraint [CRK18].

• o � ϕ is in constant time when ϕ is a single octagonal constraint.
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Example of integer octagon

Take the following constraints:

x0 ≥ 1 ∧ x0 ≤ 3 x1 ≥ 1 ∧ x1 ≤ 4

x0 − x1 ≤ 1 −x0 + x1 ≤ 1

Bound constraints on x0 and x1 are represented by the yellow box, and

octagonal constraints by the green box.

x0

x1

x0,10

x0,11

x0

x1
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Abstract constraint solver

A solver by abstract interpretation, with Abs an abstract domain:

1: solve(a ∈ Abs)

2: a← refine(a)

3: if split(a) = {a} then

4: return {a}
5: else if split(a) = {} then

6: return {}
7: else

8: 〈a1, . . . , an〉 ← split(a)

9: return
⋃n

i=0 solve(ai )

10: end if

Conservative extension: We encapsulate propagators in an abstract

domain PP.

Many abstract domains: Octagon, Polyhedron, products, . . .
17



Products of Abstract Domains
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Three kinds of constraints in RCPSP

• In green: octagonal constraints treated by octagon abstract domain.

• In red: equivalence constraints treated in a specialized reduced

product.

• In blue: interval constraints treated by the PP abstract domain.

∀(i � j) ∈ P, si + di ≤ sj

∀j ∈ [1..n], ∀i ∈ [1..n] \ {j},
bi,j ⇔ (si ≤ sj ∧ sj < si + di )

∀j ∈ [1..n], rk,j + (
∑

i∈[1..n]\{j}

rk,i ∗ bi,j) ≤ ck

Equivalence constraints connect the PP and octagon abstract domains.
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Direct product: combination of abstract domains

We can define a direct product over PP × Oct as follows:

(p, o) t (p′, o′) = (p tPP p′, o tOct o
′)

JϕK =


(JϕKPP , JϕKOct)

(JϕKPP ,⊥Oct) if JϕKOct is not defined

(⊥PP , JϕKOct) if JϕKPP is not defined

refine((p, o)) = (refine(p), refine(o))

Issue: domains do not exchange information.
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Reduced product via equivalence constraints [Tal+19]

We can improve the refinement operator of the direct product by

connecting constraints from both domains via equivalence constraints.

• Let ϕ1 ⇔ ϕ2 be an equivalence constraint where Jϕ1KPP and

Jϕ2KOct are defined, then we have:

prop⇔(p, o, ϕ1 ⇔ ϕ2) ,

p �PP ϕ1 =⇒ (p, o t Jϕ2KOct)

p �PP ¬ϕ1 =⇒ (p, o t J¬ϕ2KOct)

o �Oct ϕ2 =⇒ (p t Jϕ1KPP , o)

o �Oct ¬ϕ2 =⇒ (p t J¬ϕ1KPP , o)

(p, o) otherwise

• Result: A generic reduced product to combine abstract domains

with disjoint set of variables.
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Interval propagators completion [TMT20]

Consider the constraint ϕ , D1 > 1 ∧ T1 + T2 ≤ D1 ∧ T1 − T2 ≤ 3.

• D1 > 1 can be interpreted in boxes,

• T1 − T2 ≤ 3 in octagons,

• but T1 + T2 ≤ D1 is too general for any of these two because it has

3 variables...

• ...and it shares its variables with the other two.

Solution: Use the notion of propagator functions to connect variables

between abstract domains.
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Interval propagators completion

Abstract domain: Interval propagators completion (IPC)

• Lattice structure: IPC (A) = A× P([A→ A]).

• We equip A with a pair of projective functions btca and dtea
projecting resp. the lower and upper bound of the term t in a ∈ A.

The goal is to use IPC (Box × Octagon) with a propagator for

T1 + T2 ≤ D1:

JT1 + T2 ≤ D1K = λa.a

tA JT1 + T2 ≤ dteaKA Send an over-approximation to octagon.

tA JbT1 + T2ca ≤ D1KA Send an over-approximation to box.
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Interval propagators completion

JT1 + T2 ≤ D1K = λa.a

tA JT1 + T2 ≤ dteaKA Send an over-approximation to octagon.

tA JbT1 + T2ca ≤ D1KA Send an over-approximation to box.

Example

• Let D1 ∈ [1..3], then T1 + T2 ≤ 3 is sent to the octagon.

• Let T1 + T2 ∈ [2..4], then 2 ≤ D1 is sent to the box.

• New over-approximations are sent whenever a bound is updated.

Exchange of over-approximations among abstract domains.
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Soundness and Completeness
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Abstract constraint reasoning

JK] JK[

γ

α

Φ

A] C [

• Φ is the set of all first-order logical formulas.

• C [ is the concrete domain.

• A] is the abstract domain.
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Abstract constraint reasoning

JK] JK[

γ

α

x > 2.25 ∧ x < 2.75

A] C [

• x > 2.25 ∧ x < 2.75 ∈ Φ is a logical formula.
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Abstract constraint reasoning

JK] JK[

γ

α

x > 2.25 ∧ x < 2.75

A] P(R)

e.g. {x ∈ R | x > 2.25 ∧ x < 2.75}

• x > 2.25 ∧ x < 2.75 ∈ Φ is a logical formula.

• {x ∈ R | x > 2.25 ∧ x < 2.75} is the concrete solutions set of this

formula.
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Abstract constraint reasoning

JK] JK[

γ

α

x > 2.25 ∧ x < 2.75

F× F P(R)

e.g. {x ∈ R | x > 2.25 ∧ x < 2.75}

• It is not possible to represent all real numbers in a machine.

• We rely on the abstract domain of floating point intervals F× F.
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Abstract constraint reasoning

JK] JK[

γ

α

x > 2.25 ∧ x < 2.75

F× F P(R)

e.g. {x ∈ R | x > 2.25 ∧ x < 2.75}

• Tradeoff between completeness and soundness: either all solutions

with extra, or a subset without extra.

• Over-approximation: Jx > 2.25 ∧ x < 2.75K]↑ = [2.25..2.75] ∈ F2

(2.25 and 2.75 are not solutions).

• Under-approximation: Jx > 2.25 ∧ x < 2.75K]↓ = [2.375..2.625] ∈ F2

(2.26 and 2.74 are missing solutions).
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Concrete domain for constraint reasoning

• Let V be a set of values (universe of discourse) and X a set of

variables.

• We have Asn = [X → V ], the set of all assignments of the variables

to values.

• The concrete domain is the following lattice D[ = 〈P(Asn),⊇〉.

Using the usual Tarski model-theoretic semantics of first-order logic, we

can interpret a logical formula ϕ in the concrete domain (A is a

structure):

J.K[ : Φ→ D[

JϕK[ = {a ∈ Asn | A �a ϕ}

Example:

Jx ∈ {1, 2}, y ∈ {1, 3}, x ≥ yK[ = {{x 7→ 1, y 7→ 1}, {x 7→ 2, y 7→ 1}}
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Two core properties

Using this formal framework, we establish two important properties of

abstract domains:

∃i ∈ N, (γ ◦ refine i ◦ J.K)(ϕ) ⊆ JϕK[ (under-approximation)

∀i ∈ N, (γ ◦ refine i ◦ J.K)(ϕ) ⊇ JϕK[ (over-approximation)

A D[

JϕK[

JϕK

refinei (JϕK)

refinei (JϕK)

JϕK

over-appx

under-appx

γ

γ

γ
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Further theoretical investigations [Tal+21] (draft)

When reasoning in this framework, fundamental questions arise:

• Compositionality: given two under-/over-approximating refinement

functions f and g , under what conditions f ◦ g preserves

under-/over-approximations?

• How to define propagation which is an over-approximating

refinement operator which becomes under-approximating on

unsplittable elements.

⇒ Search tree abstract domain.

• ...

It is possible to establish general theorems valid for any/many

abstract domains.
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Perspective: Towards automatic creation of the abstract domain

JK] JK[

γ

α

ϕ

A]
1 × . . .× A]

n C [

• How to create an appropriate combination of abstract domains for a

particular formula?

• “Type inference”: In which abstract domain goes each subformula

ϕi ∈ ϕ?
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Towards a theory for constraint

solving on GPUs



Constraint solving on GPUs (Ongoing research project with Frédéric Pinel)

f
g

[0..3]

[1..3]

[2..3]

[3..3]

>

[0..2]

[0..1] [1..2]

[0..0] [1..1] [2..2]

• f (x) = x t [2..∞] models the constraint x ≥ 2.

• g(x) = x t [−∞..2] models the constraint x ≤ 2.

• Concurrent execution: f || g = [2..2]

In parallel on shared memory? No problem, because they do not

modify the same memory cell... but what if?
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Parallel execution of refinement functions

fg

[0..3]

[1..3]

[2..3]

[3..3]

>

[0..2]

[0..1] [1..2]

[0..0] [1..1] [2..2]

Here, both f and g modify the same memory cell: race condition?

void update_lb(int new_lb) {

if(new_lb > lb) {

lb = new_lb;

}

}

Indeed, it is possible that after f || g, we have [1..3] instead of [2..3]. 30



Parallel execution without synchronization and atomics

Key idea: With lattice data structure and fixpoint of

refinement, our model is tolerant to race conditions.

• Key idea: we execute f || g until we reach a fixpoint.

• Assume a race condition, then f || g = [1..3].

• But f || g is not at a fixed point, so it is reexecuted.

• The second time, f || g = [2..3], because g is at a local fixpoint

and cannot write in lb anymore.
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Turbo: a pure GPU constraint solver

We have experimented this idea with Turbo1, a constraint solver with

both propagation and search on the GPU.

• Almost no synchronization (2 __syncthreads, mostly due to the

opaque scheduling strategy of NVIDIA GPU).

• No atomic statement (actually, just one for the optimisation bound

but avoidable!).

Still many optimisations to make, currently around one order of

magnitude faster than GeCode on simple scheduling problem.

1https://github.com/ptal/turbo/
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An architecture for constraint solving on GPU

...

Global memory (40 GB)

SM 1 (196 KB L1 Cache)

64 cores

SM 108 (196 KB L1 Cache)

64 cores

L2 Cache (40 MB)

• OR-parallelism across SM.

• AND-parallelism inside each SM.

• Enable the usage of cache L1 for fast memory access.
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Conclusion



Conclusion

• Abstract interpretation a “grand unification theory” among the

fields of constraint reasoning?

• Not there yet, but interesting theory and promising results!

JK] JK[

γ

α

Φ

A] C [ f
g

[0..3]

[1..3]

[2..3]

[3..3]

>

[0..2]

[0..1] [1..2]

[0..0] [1..1] [2..2]
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